Rojas-Lara B, Morrison J. Differential effects of shading fruit or foliage on the development and composition of grape berries. Vitis. 1989;28:199–208.
Google Scholar
Dokoozlian NK, Kliewer WM. Influence of light on grape berry growth and composition varies during fruit development. J Am Soc Hort Sci. 1996;121(5):869–74.
Article
Google Scholar
Poni S, Bernizzon F, Civard S, Libelli N. Effects of pre-bloom leaf removal on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. Aust J Grape Wine Res. 2009;15(2):185–93.
Article
CAS
Google Scholar
Intrieri C, Filippetti I, Allegro G, Centinari M, Poni S. Early defoliation (hand vs mechanical) for improved crop control and grape composition in Sangiovese (Vitis vinifera L.). Aust J Grape Wine Res. 2008;14(1):25–32.
Article
CAS
Google Scholar
Pastore C, Zenoni S, Fasoli M, Pezzotti M, Tornielli GB, Filippetti I. Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biol. 2013;13(1):30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spayd SE, Tarara JM, Mee DL, Ferguson JC. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot Berries. Am J Enol Vitic. 2002;53(3):171–82.
CAS
Google Scholar
Friedel M, Stoll M, Patz CD, Will F, Dietrich H. Impact of light exposure on fruit composition of white ‘Riesling’ grape berries (Vitis vinifera L.). Vitis. 2015;54:107–16.
Kotseridis Y, Georgiadou A, Tikos P, Kallithraka S, Koundouras S. Effects of severity of post-flowering leaf removal on berry growth and composition of three red Vitis vinifera L. cultivars grown under semiarid conditions. J Agric Food Chem. 2012;60(23):6000–10.
Article
CAS
PubMed
Google Scholar
Wu B-H, Cao Y-G, Guan L, Xin H-P, Li J-H, Li S-H. Genome-wide transcriptional profiles of the berry skin of two red grape cultivars (Vitis vinifera) in which anthocyanin synthesis is sunlight-dependent or -independent. PLoS One. 2014;9(8):e105959.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tardaguila J, de Toda FM, Poni S, Diago MP. Impact of early leaf removal on yield and fruit and wine composition of Vitis vinifera L. Graciano and Carignan. Am J Enol Vitic. 2010;61(3):372–81.
CAS
Google Scholar
Sun R, He F, Lan Y, Xing R, Liu R, Pan Q, Wang J, Duan C. Transcriptome comparison of Cabernet Sauvignon grape berries from two regions with distinct climate. J Plant Physiol. 2015;178:43–54.
Article
CAS
PubMed
Google Scholar
Bergqvist J, Dokoozlian N, Ebisuda N. Sunlight Exposure and Temperature Effects on Berry Growth and Composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. Am J Enol Vitic. 2001;52(1):1–7.
CAS
Google Scholar
Sun R-Z, Cheng G, Li Q, He Y-N, Wang Y, Lan Y-B, Li S-Y, Zhu Y-R, Song W-F, Zhang X, et al. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front Plant Sci. 2017;8:547.
Downey MO, Harvey JS, Robinson SP. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust J Grape Wine Res. 2004;10(1):55–73.
Article
CAS
Google Scholar
Li J-H, Guan L, Fan P-G, Li S-H, Wu B-H. Effect of sunlight exclusion at different phenological stages on anthocyanin accumulation in red grape clusters. Am J Enol Vitic. 2013;64(3):349–56.
Article
CAS
Google Scholar
Adams DO. Phenolics and ripening in grape berries. Am J Enol Vitic. 2006;57(3):249–56.
CAS
Google Scholar
Teixeira A, Eiras-Dias J, Castellarin S, Gerós H. Berry phenolics of grapevine under challenging environments. Int J Mol Sci. 2013;14(9):18711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Downey MO, Dokoozlian NK, Krstic MP. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic. 2006;57(3):257–68.
CAS
Google Scholar
Waterhouse AL. Wine Phenolics. Ann N Y Acad Sci. 2002;957(1):21–36.
Article
CAS
PubMed
Google Scholar
Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H. Biochemical changes throughout grape berry development and fruit and wine quality. Food. 2007;1:1–22.
Google Scholar
Sternad Lemut M, Trost K, Sivilotti P, Vrhovsek U. Pinot Noir grape colour related phenolics as affected by leaf removal treatments in the Vipava Valley. J Food Compost Anal. 2011;24(6):777–84.
Article
CAS
Google Scholar
Šuklje K, Lisjak K, Baša Česnik H, Janeš L, Du Toit W, Coetzee Z, Vanzo A, Deloire A. Classification of grape berries according to diameter and total soluble solids to study the effect of light and temperature on methoxypyrazine, glutathione, and hydroxycinnamate evolution during ripening of Sauvignon blanc (Vitis vinifera L.). J Agric Food Chem. 2012;60(37):9454–61.
Article
PubMed
CAS
Google Scholar
Cortell JM, Kennedy JA. Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) Pinot Noir fruit and extraction in a model system. J Agric Food Chem. 2006;54(22):8510–20.
Article
CAS
PubMed
Google Scholar
Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry. 2012;78:54–64.
Article
CAS
PubMed
Google Scholar
Reshef N, Agam N, Fait A. Grape berry acclimation to excessive solar irradiance leads to repartitioning between major flavonoid groups. J Agric Food Chem. 2018;66(14):3624–36.
Article
CAS
PubMed
Google Scholar
Reshef N, Walbaum N, Agam N, Fait A. Sunlight modulates fruit metabolic profile and shapes the spatial pattern of compound accumulation within the grape cluster. Front Plant Sci. 2017;8:70.
Article
PubMed
PubMed Central
Google Scholar
Liu L, Gregan S, Winefield C, Jordan B. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ. 2015;38(5):905–19.
Article
CAS
PubMed
Google Scholar
Fujita A, Soma N, Goto-Yamamoto N, Mizuno A, Kiso K, Hashizum K. Effectof shading on proanthocyanidin biosynthesis in the grape berry. J Jpn Soc Hortic Sci. 2007;76(2):112–9.
Article
CAS
Google Scholar
Ristic R, Downey MO, Iland PG, Bindon K, Francis IL, Herderich M, Robinson SP. Exclusion of sunlight from Shiraz grapes alters wine colour, tannin and sensory properties. Aust J Grape Wine Res. 2007;13(2):53–65.
Article
CAS
Google Scholar
Koyama K, Goto-Yamamoto N. Bunch shading during different developmental stages affects the phenolic biosynthesis in berry skins of ‘Cabernet Sauvignon’ grapes. J Am Soc Hort Sci. 2008;133(6):743–53.
Article
Google Scholar
Ban T, Shiozaki S, Ogata T, Horiuchi S. Effects of abscisic acid and shading treatments on the levels of anthocyanin and resveratrol in skin of Kyoho grape berry. Acta Hortic. 2000;514:83–9.
Article
CAS
Google Scholar
Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 2004;167(2):247–52.
Article
CAS
Google Scholar
Chorti E, Guidoni S, Ferrandino A, Novello V. Effect of different cluster sunlight exposure levels on ripening and anthocyanin accumulation in Nebbiolo grapes. Am J Enol Vitic. 2010;61(1):23–30.
CAS
Google Scholar
Guan L, Dai Z, Wu B-H, Wu J, Merlin I, Hilbert G, Renaud C, Gomès E, Edwards E, Li S-H, et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta. 2016;243(1):23–41.
Article
CAS
PubMed
Google Scholar
Matus JT, Loyola R, Vega A, Peña-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot. 2009;60(3):853–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuyama S, Tanzawa F, Kobayashi H, Suzuki S, Takata R, Saito H. Leaf removal accelerated accumulation of delphinidin-based anthocyanins in ‘Muscat Bailey A’ [Vitis × labruscana (Bailey) and Vitis vinifera (Muscat Hamburg)] grape skin. J Jpn Soc Hortic Sci. 2014;83(1):17–22.
Article
CAS
Google Scholar
Wang Y, He Y-N, Chen W-K, He F, Chen W, Cai X-D, Duan C-Q, Wang J. Effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of Cabernet Sauvignon. Food Chem. 2018;248:101–10.
Article
CAS
PubMed
Google Scholar
Rustioni L, Rossoni M, Cola G, Mariani L, Failla O. Bunch exposure to direct solar radiation increases ortho-diphenol anthocyanins in Northern Italy climatic condition. J Int Sci Vine Vin. 2011;45:85–99.
CAS
Google Scholar
Lee J, Skinkis PA. Oregon ‘Pinot noir’ grape anthocyanin enhancement by early leaf removal. Food Chem. 2013;139(1):893–901.
Article
CAS
PubMed
Google Scholar
Haselgrove L, Botting D, van Heeswijck R, Høj PB, Dry PR, Ford C, Land PGI. Canopy microclimate and berry composition: the effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries. Aust J Grape Wine Res. 2000;6(2):141–9.
Article
CAS
Google Scholar
Tarara JM, Lee J, Spayd SE, Scagel CF. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Vitic. 2008;59(3):235–47.
CAS
Google Scholar
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. 2011;62(8):2465–83.
Article
CAS
PubMed
Google Scholar
Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A. Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci. 2013;14(7):14950.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci. 2014;5:534.
Article
PubMed
PubMed Central
Google Scholar
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol. 2009;151(3):1513–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azuma A, Yakushiji H, Koshita Y, Kobayashi S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta. 2012;236(4):1067–80.
Article
CAS
PubMed
Google Scholar
Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol. 2010;72(6):607–20.
Article
CAS
PubMed
Google Scholar
Loyola R, Herrera D, Mas A, Wong DCJ, Höll J, Cavallini E, Amato A, Azuma A, Ziegler T, Aquea F, et al. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. J Exp Bot. 2016;67(18):5429–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, Bogs J, Moser C. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. J Exp Bot. 2016;67(11):3509–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matus JT. Transcriptomic and metabolomic networks in the grape berry illustrate that it takes more than flavonoids to fight against ultraviolet radiation. Front Plant Sci. 2016;7:1337.
Article
PubMed
PubMed Central
Google Scholar
Carbonell-Bejerano P, Diago M-P, Martínez-Abaigar J, Martínez-Zapater JM, Tardáguila J, Núñez-Olivera E. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol. 2014;14(1):183.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suzuki M, Nakabayashi R, Ogata Y, Sakurai N, Tokimatsu T, Goto S, Suzuki M, Jasinski M, Martinoia E, Otagaki S, et al. Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation. Plant Physiol. 2015;168(1):47–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zenoni S, Dal Santo S, Tornielli GB, D'Incà E, Filippetti I, Pastore C, Allegro G, Silvestroni O, Lanari V, Pisciotta A, et al. Transcriptional responses to pre-flowering leaf defoliation in grapevine berry from different growing sites, years, and genotypes. Front Plant Sci. 2017;8:630.
Article
PubMed
PubMed Central
Google Scholar
Downey MO, Harvey JS, Robinson SP. Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust J Grape Wine Res. 2003;9(2):110–21.
Article
CAS
Google Scholar
Reid KE, Olsson N, Schlosser J, Peng F, Lund ST. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006;6(1):27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mu L, He F, Pan Q-H, Zhou L, Duan C-Q. Screening and verification of late embryogenesis abundant protein interacting with anthocyanidin reductase in grape berries. Vitis. 2014;53(2):81–7.
CAS
Google Scholar
Griñán I, Morales D, Galindo A, Torrecillas A, Pérez-López D, Moriana A, Collado-González J, Carbonell-Barrachina ÁA, Hernández F. Effect of preharvest fruit bagging on fruit quality characteristics and incidence of fruit physiopathies in fully irrigated and water stressed pomegranate trees. J Sci Food Agric. 2019;99(3):1425–33.
Article
PubMed
CAS
Google Scholar
Karajeh MR. Pre-harvest bagging of grape clusters as a non-chemical physical control measure against certain pests and diseases of grapevines. Org Agric. 2018;8(3):259–64.
Article
Google Scholar
Sharma R, Pal R, Asrey R, Sagar V, Dhiman M, Rana M. Pre-harvest fruit bagging influences fruit color and quality of apple cv. Delicious. Agric Sci. 2013;4:443–8.
Google Scholar
Sharma RR, Reddy SVR, Jhalegar MJ. Pre-harvest fruit bagging: a useful approach for plant protection and improved post-harvest fruit quality – a review. J Hortic Sci Biotechnol. 2014;89(2):101–13.
Article
Google Scholar
Hudina M, Stampar F. Effect of fruit bagging on quality of ‘Conference’ pear (Pyrus communis L.). Eur J Hortic Sci. 2011;76(5):176–81.
Google Scholar
Zhou Y, Yuan C, Ruan S, Zhang Z, Meng J, Xi Z. Exogenous 24-epibrassinolide interacts with light to regulate anthocyanin and proanthocyanidin biosynthesis in Cabernet Sauvignon (Vitis vinifera L.). Molecules. 2018;23(1):93.
Article
PubMed Central
CAS
Google Scholar
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem. 2013;72:1–20.
Article
CAS
PubMed
Google Scholar
Li Q, He F, Zhu B-Q, Liu B, Sun R-Z, Duan C-Q, Reeves MJ, Wang J. Comparison of distinct transcriptional expression patterns of flavonoid biosynthesis in Cabernet Sauvignon grapes from east and west China. Plant Physiol Biochem. 2014;84:45–56.
Article
CAS
PubMed
Google Scholar
Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013;18(9):477–83.
Article
CAS
PubMed
Google Scholar
Liu C-C, Chi C, Jin L-J, Zhu J, Yu J-Q, Zhou Y-H. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell Environ. 2018;41(8):1762–75.
Article
CAS
PubMed
Google Scholar
Tao R, Bai S, Ni J, Yang Q, Zhao Y, Teng Y. The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’ pear. Planta. 2018;248(1):37–48.
Article
CAS
PubMed
Google Scholar
Matus JT, Cavallini E, Loyola R, Höll J, Finezzo L, Dal Santo S, Vialet S, Commisso M, Roman F, Schubert A, et al. A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus. Plant J. 2017;91(2):220–36.
Article
CAS
PubMed
Google Scholar
Boss PK, Davies C, Robinson SP. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 1996;111(4):1059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta. 2002;215(6):924–33.
Article
CAS
PubMed
Google Scholar
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222.
CAS
PubMed
PubMed Central
Google Scholar
Fujita A, Goto-Yamamoto N, Aramaki I, Hashizume K. Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci Biotechnol Biochem. 2006;70(3):632–8.
Article
CAS
PubMed
Google Scholar
Czemmel S, Höll J, Loyola R, Arce-Johnson P, Alcalde JA, Matus JT, Bogs J. Transcriptome-wide identification of novel UV-B- and light modulated flavonol pathway genes controlled by VviMYBF1. Front Plant Sci. 2017;8:1084.
Article
PubMed
PubMed Central
Google Scholar
Lau OS, Deng XW. Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol. 2010;13(5):571–7.
Article
CAS
PubMed
Google Scholar
Seo M, Nambara E, Choi G, Yamaguchi S. Interaction of light and hormone signals in germinating seeds. Plant Mol Biol. 2009;69(4):463–72.
Article
CAS
PubMed
Google Scholar
Li Q-F, He J-X. BZR1 interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in Arabidopsis in darkness. Mol Plant. 2016;9(1):113–25.
Article
CAS
PubMed
Google Scholar
He F, Mu L, Yan G-L, Liang N-N, Pan Q-H, Wang J, Reeves MJ, Duan C-Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules. 2000;15:9057–91.
Article
CAS
Google Scholar
Berli FJ, Fanzone M, Piccoli P, Bottini R. Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J Agric Food Chem. 2011;59(9):4874–84.
Article
CAS
PubMed
Google Scholar
Luan L-Y, Zhang Z-W, Xi Z-M, Huo S-S, Ma L-N. Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. S Afr J Enol Vitic. 2013;34(2):196–203.
CAS
Google Scholar
Ban T, Ishimaru M, Kobayashi S, Goto-Yamamoto N, Horiuchi S. Abscisic acid and 2,4-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’ grape berries. J Hortic Sci Biotechnol. 2003;78(4):586–9.
Article
CAS
Google Scholar
Fasoli M, Richter CL, Zenoni S, Bertini E, Vitulo N, Santo SD, Dokoozlian N, Pezzotti M, Tornielli GB. Timing and order of the molecular events marking the onset of berry ripening in grapevine. Plant Physiol. 2018;178(3):1187–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signal Behav. 2014;9(1):e27522.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci. 2015;20(3):176–85.
Article
CAS
PubMed
Google Scholar
Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell. 2002;14(10):2463–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol. 2009;50(12):2210–22.
Article
CAS
PubMed
Google Scholar
Sun R-Z, Pan Q-H, Wang J, Duan C-Q. Light response and potential interacting proteins of a grape flavonoid 3′-hydroxylase gene promoter. Plant Physiol Biochem. 2015;97:70–81.
Article
CAS
PubMed
Google Scholar
Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J. 2015;82(1):105–21.
Article
CAS
PubMed
Google Scholar
Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, Ruperti B, Tornielli GB. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Front Plant Sci. 2017;7:1979.
Article
PubMed
PubMed Central
Google Scholar
Hilker M, Schmülling T. Stress priming, memory, and signalling in plants. Plant Cell Environ. 2019;42(3):753–61.
Article
CAS
PubMed
Google Scholar
Kumar S. Epigenomics of plant responses to environmental stress. Epigenomes. 2018;2(1):6.
Article
CAS
Google Scholar
Sun R-Z, Zuo E-H, Qi J-F, Liu Y, Lin C-T, Deng X. A role of age-dependent DNA methylation reprogramming in regulating the regeneration capacity of Boea hygrometrica leaves. Funct Integr Genomic. 2019. https://doi.org/10.1007/s10142-019-00701-3.
Cheng G, He Y-N, Yue T-X, Wang J, Zhang Z-W. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules. 2014;19(9):13683–703.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Z-Z, Li X-X, Chu Y-N, Zhang M-X, Wen Y-Q, Duan C-Q, Pan Q-H. Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries. Plant Physiol Biochem. 2012;57:74–83.
Article
CAS
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Falcone Ferreyra ML, Rius S, Emiliani J, Pourcel L, Feller A, Morohashi K, Casati P, Grotewold E. Cloning and characterization of a UV-B-inducible maize flavonol synthase. Plant J. 2010;62(1):77–91.
Article
PubMed
CAS
Google Scholar
Rotenberg D, Thompson TS, German TL, Willis DK. Methods for effective real-time RT-PCR analysis of virus-induced gene silencing. J Virol Methods. 2006;138(1–2):49–59.
Article
CAS
PubMed
Google Scholar
Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell. 2011;23(3):1153–70.
Article
CAS
PubMed
PubMed Central
Google Scholar