Gessler C, Pertot I, Perazzolli M. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol Mediterr. 2011;50:3–44.
Google Scholar
Eibach R, Zyprian EM, Welter LJ, Töpfer R. The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis J Grapevine Res. 2007;46:120–4.
CAS
Google Scholar
Merdinoglu D, Schneider C, Prado E, Wiedemann-Merdinoglu S, Mestre P. Breeding for durable resistance to downy and powdery mildew in grapevine. OENO One. 2018;52. https://doi.org/10.20870/oeno-one.2018.52.3.2116.
Article
Google Scholar
Hwang C-F. Mapping and detection of downy mildew and Botytis bunch rot resistance loci in Norton-based population. 2018. http://gbg2018.u-bordeaux.fr/files/gbg2018/presentation/O34_Hwang_ed.pdf. Accessed 9 Nov 2018.
Google Scholar
Divilov K, Barba P, Cadle-Davidson L, Reisch BI. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet. 2018;131:1133–43.
Article
Google Scholar
Song S, Fu P, Lu J. Downy mildew resistant QTLs in Vitis amurensis “Shuang Hong” grapevine. In: Abstract Book GBG 2018. XII International Conference on Grapevine Breeding and Genetics Bordeaux; 2018. p. 131.
Lin H, Leng H, Guo Y, Kondo S, Zhao Y, Shi G, et al. QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. ×V. amurensis Rupr.) crossing. Sci Hortic. 2019;244:200–7.
Article
CAS
Google Scholar
Sapkota S, Chen L-L, Yang S, Hyma KE, Cadle-Davidson L, Hwang C-F. Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton’. Theor Appl Genet. 2019;132:137–47.
Article
CAS
Google Scholar
Feechan A, Jermakow AM, Ivancevic A, Godfrey D, Pak H, Panstruga R, et al. Host cell entry of powdery mildew is correlated with endosomal transport of antagonistically acting VvPEN1 and VvMLO to the papilla. Mol Plant-Microbe Interact. 2013;26:1138–50.
Article
CAS
Google Scholar
Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, et al. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. TAG Theor Appl Genet. 2004;108:501–15.
Article
CAS
Google Scholar
Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, et al. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed. 2007;20:359–74.
Article
CAS
Google Scholar
Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon A-F, Cipriani G, et al. Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet. 2009;120:163–76.
Article
Google Scholar
Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R, Kozma P, et al. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet. 2012;124:277–86.
Article
Google Scholar
Vezzulli S, Malacarne G, Masuero D, Vecchione A, Dolzani C, Goremykin V, et al. The Rpv3-3 haplotype and Stilbenoid induction mediate downy mildew resistance in a grapevine interspecific population. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00234.
Zyprian E, Ochßner I, Schwander F, Šimon S, Hausmann L, Bonow-Rex M, et al. Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Gen Genomics. 2016;291:1573–94.
Article
CAS
Google Scholar
Casagrande K, Falginella L, Castellarin SD, Testolin R, Di Gaspero G. Defence responses in Rpv3-dependent resistance to grapevine downy mildew. Planta. 2011;234:1097–109.
Article
CAS
Google Scholar
Eibach R, Töpfer R. Success in resistance breeding: “Regent” and its steps into the market. Acta Hortic. 2003;603:687–91.
Pedneault K, Provost C. Fungus resistant grape varieties as a suitable alternative for organic wine production: benefits, limits, and challenges. Sci Hortic. 2016;208:57–77.
Article
CAS
Google Scholar
Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R. New Horizons for Grapevine Breeding. In: Fruit, Vegetable and Cereal Science and Biotechnology. Global Science Books; 2011. p. 79–100.
Google Scholar
Peressotti E, Wiedemann-Merdinoglu S, Delmotte F, Bellin D, Di Gaspero G, Testolin R, et al. Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biol. 2010;10:147.
Article
Google Scholar
Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D, et al. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0061228.
Article
CAS
Google Scholar
Delmotte F, Mestre P, Schneider C, Kassemeyer H-H, Kozma P, Richart-Cervera S, et al. Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew. Infect Genet Evol. 2014;27:500–8.
Article
Google Scholar
Kamoun S. A catalogue of the effector Secretome of plant pathogenic oomycetes. Annu Rev Phytopathol. 2006;44:41–60.
Article
CAS
Google Scholar
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9.
Article
CAS
Google Scholar
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet. 2010;11:539–48.
Article
CAS
Google Scholar
Silva MS, Arraes FBM, de Araújo Campos M, Grossi-de-Sa M, Fernandez D, de Souza Cândido E, et al. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Sci. 2018;270:72–84.
Article
CAS
Google Scholar
Eulgem T. Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci. 2005;10:71–8.
Article
CAS
Google Scholar
Thatcher LF, Anderson JP, Singh KB. Plant defence responses: what have we learnt from Arabidopsis ? Funct Plant Biol. 2005;32:1.
Article
CAS
Google Scholar
Thomma BPHJ, Nürnberger T, Joosten MHAJ. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell. 2011;23:4–15.
Article
CAS
Google Scholar
Lipka V. Pre- and Postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science. 2005;310:1180–3.
Article
CAS
Google Scholar
Stein M. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell. 2006;18:731–46.
Article
CAS
Google Scholar
Johansson ON, Fantozzi E, Fahlberg P, Nilsson AK, Buhot N, Tör M, et al. Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific resistance in Arabidopsis thaliana. Plant J. 2014;79:466–76.
Article
CAS
Google Scholar
Jeandet P, Douillet-Breuil A-C, Bessis R, Debord S, Sbaghi M, Adrian M. Phytoalexins from the Vitaceae: biosynthesis, Phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem. 2002;50:2731–41.
Article
CAS
Google Scholar
Langcake P, Pryce RJ. A new class of phytoalexins from grapevines. Experientia. 1977;33:151–2.
Article
CAS
Google Scholar
Dercks W, Creasy LL. The significance of stilbene phytoalexins in the Plasmopara viticola grapevine interaction. Physiol Mol Plant Pathol. 1989;34:189–202.
Article
CAS
Google Scholar
Pezet R, Gindro K, Viret O, Richter H. Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis J Grapevine Res. 2004;43:145–8.
CAS
Google Scholar
Pezet R, Gindro K, Viret O, Spring J-L. Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol. 2004;65:297–303.
Article
CAS
Google Scholar
Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E, Santos-Rosa M, et al. A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of Pterostilbene in grapevine. Plant Physiol. 2008;148:1630–9.
Article
CAS
Google Scholar
Langcake P. Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, ε-viniferin, α-viniferin and pterostilbene. Physiol Plant Pathol. 1981;18:213–26.
Article
CAS
Google Scholar
Douillet-Breuil A-C, Jeandet P, Adrian M, Bessis R. Changes in the Phytoalexin content of various Vitis Spp. in response to ultraviolet C elicitation. J Agric Food Chem. 1999;47:4456–61.
Article
CAS
Google Scholar
Schnee S, Viret O, Gindro K. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol. 2008;72:128–33.
Article
CAS
Google Scholar
Malacarne G, Vrhovsek U, Zulini L, Cestaro A, Stefanini M, Mattivi F, et al. Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. BMC Plant Biol. 2011;11. https://doi.org/10.1186/1471-2229-11-114.
Article
CAS
Google Scholar
Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol. 2012;12. https://doi.org/10.1186/1471-2229-12-130.
Article
CAS
Google Scholar
Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M, Zadra C, et al. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics. 2010;11:117.
Article
Google Scholar
Boso S, Alonso-Villaverde V, Martínez M-C, Kassemeyer H-H. Quantification of stilbenes in Vitis genotypes with different levels of resistance to Plasmopara viticola infection. Am J Enol Vitic. 2012;63:419–23.
Article
Google Scholar
Alonso-Villaverde V, Voinesco F, Viret O, Spring J-L, Gindro K. The effectiveness of stilbenes in resistant Vitaceae: ultrastructural and biochemical events during Plasmopara viticola infection process. Plant Physiol Biochem. 2011;49:265–74.
Article
CAS
Google Scholar
Wang C, Wu J, Zhang Y, Lu J. Muscadinia rotundifolia ‘Noble’ defense response to Plasmopara viticola inoculation by inducing phytohormone-mediated stilbene accumulation. Protoplasma. 2018;255:95–107.
Article
CAS
Google Scholar
Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, et al. The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell. 2013;25:4135–49.
Article
Google Scholar
Gamm M, Héloir M-C, Kelloniemi J, Poinssot B, Wendehenne D, Adrian M. Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Mol Gen Genomics. 2011;285:273–85.
Article
CAS
Google Scholar
Kortekamp A, Wind R, Zyprian E. Investigation of the interaction of Plasmopara viticola with susceptible and resistant grapevine cultivars. J Plant Dis Prot. 1998;105:475–88.
Google Scholar
Wu L, Chen H, Curtis C, Fu ZQ. Go in for the kill: how plants deploy effector-triggered immunity to combat pathogens. Virulence. 2014;5:710–21.
Article
CAS
Google Scholar
Gindro K, Pezet R, Viret O. Histological study of the responses of two Vitis vinifera cultivars (resistant and susceptible) to Plasmopara viticola infections. Plant Physiol Biochem. 2003;41:846–53.
Article
CAS
Google Scholar
Gómez-Zeledón J, Kaiser M, Spring O. Exploring host-pathogen combinations for compatible and incompatible reactions in grapevine downy mildew. Eur J Plant Pathol. 2017;149:1–10.
Article
Google Scholar
Cadle-Davidson L. Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis. 2008;92:1577–84.
Article
Google Scholar
Toffolatti S, Venturini G, Maffi D, Vercesi A. Phenotypic and histochemical traits of the interaction between Plasmopara viticola and resistant or susceptible grapevine varieties. BMC Plant Biol. 2012;12:124.
Article
CAS
Google Scholar
van den Heuvel JFJM, van der Vlugt RAA, Verbeek M, de Haan PT, Huttinga H. Characteristics of a resistance-breaking isolate of potato virus Y causing potato tuber necrotic ringspot disease. Eur J Plant Pathol. 1994;100:347–56.
Article
Google Scholar
Fargette D, Pinel A, Traore O, Ghesquiere A, Konate G. Emergence of resistance-breaking isolates of Rice yellow mottle virus during serial inoculations. Eur J Plant Pathol. 2002;108:585–91.
Article
CAS
Google Scholar
Saifert L, Sánchez-Mora FD, Assumpção WT, Zanghelini JA, Giacometti R, Novak EI, et al. Marker-assisted pyramiding of resistance loci to grape downy mildew. Pesq Agrop Brasileira. 2018;53:602–10.
Article
Google Scholar
Chong J, Poutaraud A, Hugueney P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009;177:143–55.
Article
CAS
Google Scholar
Parage C, Tavares R, Rety S, Baltenweck-Guyot R, Poutaraud A, Renault L, et al. Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiol. 2012;160:1407–19.
Article
CAS
Google Scholar
Langcake P, Pryce RJ. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol. 1976;9:77–86.
Article
CAS
Google Scholar
Chitarrini G, Soini E, Riccadonna S, Franceschi P, Zulini L, Masuero D, et al. Identification of biomarkers for defense response to Plasmopara viticola in a resistant grape variety. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01524.
Chang X, Heene E, Qiao F, Nick P. The Phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. PLoS One. 2011;6. https://doi.org/10.1371/journal.pone.0026405.
Article
CAS
Google Scholar
Figueiredo A, Monteiro F, Fortes AM, Bonow-Rex M, Zyprian E, Sousa L, et al. Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Funct Integr Genomics. 2012;12:379–86.
Article
CAS
Google Scholar
Merz PR, Moser T, Höll J, Kortekamp A, Buchholz G, Zyprian E, et al. The transcription factor VvWRKY33 is involved in the regulation of grapevine defense against the oomycete pathogen. Physiol Plant. 2014;153:365–80.
Article
Google Scholar
Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994;79:583–93.
Article
CAS
Google Scholar
van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006;44:135–62.
Article
Google Scholar
Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 2004;23:980–8.
Article
CAS
Google Scholar
Li Y, Kabbage M, Liu W, Dickman MB. Aspartyl protease mediated cleavage of AtBAG6 is necessary for autophagy and fungal resistance in plants. Plant Cell. 2016;28:233–47.
Article
CAS
Google Scholar
Chepyshko H, Lai C-P, Huang L-M, Liu J-H, Shaw J-F. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genomics. 2012;13. https://doi.org/10.1186/1471-2164-13-309.
Article
CAS
Google Scholar
Lai C-P, Huang L-M, Chen L-FO, Chan M-T, Shaw J-F. Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis. Plant Mol Biol. 2017;95:181–97.
Article
CAS
Google Scholar
Ruiz-Herrera J. Fungal cell wall; structure, synthesis, and assembly. 2nd ed. Ringgold Inc: Portland; 2012.
Google Scholar
Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55:85–97.
Article
Google Scholar
Töpfer R, Eibach R. Breeding for disease resistant varieties. In: Proceedings of the 16th Australian Wine Industry Technical Conference; 2017. p. 74–6.
Google Scholar
Hood ME, Shew HD. Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytopathology. 1996;86:704–8.
Article
Google Scholar
Feechan A, Kocsis M, Riaz S, Zhang W, Gadoury DM, Walker MA, et al. Strategies for deployment using and to manage grapevine powdery mildew informed by studies of race specificity. Phytopathology. 2015;105:1104–13.
Article
Google Scholar
Pezet R, Pont V, Cuenat P. Method to determine resveratrol and pterostilbene in grape berries and wines using high-performance liquid chromatography and highly sensitive fluorimetric detection. J Chromatogr A. 1994;663:191–7.
Article
CAS
Google Scholar
Reid KE, Olsson N, Schlosser J, Peng F, Lund ST. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006;6:27.
Article
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:10.
Article
Google Scholar
Muller PY, Miserez AR, Dobbie Z. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques. 2002;32:7.
Google Scholar
Koster J, Rahmann S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2.
Article
Google Scholar
Jaillon O, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449:463–7.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar