Skamnioti P, Gurr SJ. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol. 2009;27:141–50.
Article
CAS
Google Scholar
Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol. 2016;36:353–67.
Article
CAS
Google Scholar
Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 1999;19:55–64.
Article
Google Scholar
Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell. 2017;170:114–26.
Article
CAS
Google Scholar
Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci U S A. 2018;115:3174–9.
Article
CAS
Google Scholar
Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma BT, Wang YP, Zhao XF, Li SG, Zhu LH. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 2006;46:794–804.
Article
CAS
Google Scholar
Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science. 2009;325:998–1001.
Article
CAS
Google Scholar
Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia MH, Famoso A, Edwards JD, Wamishe Y, et al. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-04369-4.
Wu YY, Yu L, Pan CH, Dai ZY, Li YH, Xiao N, Zhang XX, Ji HJ, Huang NS, Zhao BH, Zhou CH, Liu GQ, Liu XJ, Pan XB, Liang CZ, Li AH. Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background. Mol Breed. 2016;36(2):12.
Article
CAS
Google Scholar
Jiang H, Feng Y, Bao L, Li X, Gao G, Zhang Q, Xiao J, Xu C, He Y. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed. 2012;30:1679–88.
Article
CAS
Google Scholar
Khanna A, Sharma V, Ellur RK, Shikari AB, Krishnan SG, Singh UD, Prakash G, Sharma TR, et al. Development and evaluation of near-isogenic lines for major blast resistance gene(s) in basmati rice. Theor Appl Genet. 2015;128:1243–59.
Article
CAS
Google Scholar
Song CY, Wang GL, Xin AH, Cong WB. Analysis on kinds of rice blast races in Kongyu-131 and its reasons of pathologic reaction. Heilongjiang Agricultural Sciences. 2007;1:41–2.
Google Scholar
Zhang XH, Feng XM, Lin SY. Scanning for pi loci and rebuilding an improved genome of elite rice variety Kongyu-131. Chin Bull Bot. 2017;52:30–42.
Google Scholar
Feng XM, Wang C, Nan JZ, Zhang XH, Wang RS, Jiang GQ, Yuan QB, Lin SY. Updating the elite rice variety Kongyu 131 by improving the Gn1a locus. Rice. 2017;10:35.
Article
Google Scholar
Lind SY, Takashi T, Nishimura A. Update for elite japonica variety. Paper presented at the international symposium on rice research in the era of global warming, Taiwan agriculture research institute. Taiwan. 2009:5–11.
Lin SY. Method of plant genome design, method of creating new cultivar and new cultivar. US Patent. 2014;8(889):948 B2.
Google Scholar
Xiao N, Wu Y, Pan C, Yu L, Chen Y, Liu G, Li Y, Zhang X, Wang Z, Dai Z. Improving of rice blast resistances in Japonica by pyramiding major R-genes. Front Plant Sci. 2017. https://doi.org/10.3389/fpls.2016.01918.
Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, et al. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J. 2010;61:752–66.
Article
CAS
Google Scholar
Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J. 2010;64(3):498–510.
Article
CAS
Google Scholar
Inoue H, Nakamura M, Mizubayashi T, Takahashi A, Sugano S, Fukuoka S, Hayashi N. Panicle blast 1 (Pb1) resistance is dependent on at least four QTLs in the rice genome. Rice. 2017;10:36.
Article
Google Scholar
Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434:980–6.
Article
CAS
Google Scholar
Ebbole DJ. Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol. 2007;45:437–56.
Article
CAS
Google Scholar
Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, Hayashi N, Ebana K, Mizobuchi R, Yano M. Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep. 2015. https://doi.org/10.1038/srep07773.
Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR, Pandit E, Lenka S, Anandan A. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in Deepwater rice variety, Jalmagna. Rice. 2015;8:51.
Article
Google Scholar
Suh JP, Jeung JU, Noh TH, Cho YC, Park SH, Park HS, Shin MS, Kim CK, Jena KK. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice. 2013;6:5.
Article
Google Scholar
Luthra JK, Rao MV. Multiline cultivars—how their resistance influence leaf rust disease in wheat. Euphytica. 1979;28(1):137–44.
Article
Google Scholar
Brunner S, Stirnweis D, Diaz Quijano C, Buesing G, Herren G, Parlange F, Barret P, Tassy C, Sautter C, Winzeler M, Keller B. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol J. 2012;10:398–409.
Article
CAS
Google Scholar
International Rice Research Institute (IRRI). Standard evaluation system for rice. International Rice Research Institute, 4th edn. Manila, Philippines, 1996;p 56.
Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER /EXP 3.0. Whitehead institute technical report, 3rd. Cambridge, Massachusetts: Whitehead Technical Institute; 1992.
Google Scholar
Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci U S A. 2009;106:21760–5.
Article
CAS
Google Scholar