Boyer JS. The U.S. drought of 2012 in perspective: a call to action. Global Food Security. 2013;2:139–43.
Article
Google Scholar
Yu C. China’s water crisis needs more than words. Nature. 2011;470:307–7.
Article
CAS
Google Scholar
Lynch JP. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot (Lond). 2013;112:347–57.
Article
CAS
Google Scholar
Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, et al. No time to waste: Transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Front Plant Sci. 2018;8.
Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Plant Biol. 2011;14:290–5.
CAS
Google Scholar
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63(4):1593–608.
Article
CAS
Google Scholar
Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol. 2011;52:1569–82.
Article
CAS
Google Scholar
Wang HY, Wang HL, Shao HB, Tang XL. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. 2016;7:67.
PubMed
PubMed Central
Google Scholar
Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U, Zhao W, et al. Gene regulatory networks elucidating huanglongbing disease mechanisms. PLoS One. 2013;8:e74256. https://doi.org/10.1371/journal.pone.0074256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinelli F, Ibanez A, Reagan R, Davino S, Dandekar A. Stress responses in citrus peel: comparative analysis of host responses to huanglongbing disease and puffing disorder. Sci Hortic. 2015;192:409–20. https://doi.org/10.1016/j.scienta.2015.06.037.
Article
Google Scholar
Zhao S, Li C, Guo Y, Sheng Q, Shyr Y. RnaSeqSampleSize: Real data based sample size estimation for RNA sequencing. BMC Bioinformatics. 2018;19:1. https://doi.org/10.1186/s12859-018-2191-5.
Article
CAS
Google Scholar
Martinelli F, Scalenghe R, Giovino A, Marino P, Aksenov AA, Pasamontes A, Dandekar A. Proposal of a Citrus translational genomic approach for early and infield detection of Flavescencedorée in Vitis. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology. 2014;150(1):43–53. https://doi.org/10.1080/11263504.2014.908976.
Article
Google Scholar
Tosetti R, Martinelli F, Tonutti P, Barupal D. Metabolomics Approach To Studying Minimally Processed Peach (PrunusPersica) Fruit. ActaHorticulturae. 2012;934:1017–21. https://doi.org/10.17660/actahortic.2012.934.135.
Article
Google Scholar
Rizzini F, Bonghi C, Chkaiban L, Martinelli F, Tonutti P. Effects of postharvest partial dehydration and prolonged treatments with ethylene on transcript profiling in skins of wine grape berries. ActaHorticulturae. 2010;877:1099–104.
CAS
Google Scholar
Zhai P, Yang L, Guo X, Wang Z, Guo J, Wang X, Zhu H. MetaComp: Comprehensive analysis software for comparative meta-omics including comparative metagenomics. BMC Bioinformatics. 2017:18(1). https://doi.org/10.1186/s12859-017-1849-8.
Clauw P, Coppens F, Beuf KD, Dhondt S, Daele TV, Maleux K, et al. Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol. 2015;167:800–16.
Article
CAS
Google Scholar
Song K, Kim HC, Shin S, Kim K-H, Moon J-C, Kim JY, et al. Transcriptome analysis of flowering time genes under drought stress in maize leaves. Front Plant Sci. 2017;8.
Corso M, Vannozzi A, Maza E, Vitulo N, Meggio F, Pitacco A, et al. Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. J Exp Bot. 2015;66:5739–52.
Article
CAS
Google Scholar
Li P, Cao W, Fang H, Xu S, Yin S, Zhang Y, et al. Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Frontiers in. Plant Sci. 2017;8.
Pieczynski M, Wyrzykowska A, Milanowska K, Boguszewska-Mankowska D, Zagdanska B, Karlowski W, et al. Genomewide identification of genes involved in the potato response to drought indicates functional evolutionary conservation with Arabidopsis plants. Plant Biotechnol J. 2017;16:603–14.
Article
Google Scholar
Orcheski B, Brown S. High-throughput sequencing reveals that pale green lethal disorder in apple (Malus) stimulates stress responses and affects senescence. Tree Genet Genomes. 2016;13.
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics. 2017;18.
Salman MH, Zhang C, Pervaiz T, Zheng T, Zhang CB, Lide C, et al. Gene regulation mechanism in drought-responsive grapevine leaves as revealed by transcriptomic analysis. bioRxiv. 2016:65136.
Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, et al. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 2015;15.
Rest JS, Wilkins O, Yuan W, Purugganan MD, Gurevitch J. Meta-analysis and meta-regression of transcriptomic responses to water stress in Arabidopsis. Plant J. 2016;85(4):548–60. https://doi.org/10.1111/tpj.13124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muthuramalingam P, Krishnan SR, Pothiraj R, Ramesh M. Global Transcriptome Analysis of Combined Abiotic Stress Signaling Genes Unravels Key Players in Oryza sativa L.: An In silico Approach. Front Plant Sci. 2017:8. https://doi.org/10.3389/fpls.2017.00759.
Ramu VS, Paramanantham A, Ramegowda V, Mohan-Raju B, Udayakumar M, Senthil-Kumar M. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms. PLoS One. 2016:11(6). https://doi.org/10.1371/journal.pone.0157522.
Article
Google Scholar
Boudsocq M. Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol. 2005;138:1185–94.
Article
CAS
Google Scholar
Boudsocq M, Droillard MJ, Barbier-Brygoo H, Laurière C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol. 2006;63:491–503.
Article
Google Scholar
Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell. 2004;16(5):1163–77.
Article
CAS
Google Scholar
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates Abscisic acid (ABA) and osmotic stress signals controlling Stomatal closure inArabidopsis. J Biol Chem. 2005;281:5310–8.
Article
Google Scholar
Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim B-G, et al. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J. 2007;52:223–39.
Article
CAS
Google Scholar
Dezar CA, Fedrigo GV, Chan RL. The promoter of the sunflower HD-zip protein gene Hahb4 directs tissue-specific expression and is inducible by water stress, high salt concentrations and ABA. Plant Sci. 2005;169:447–56.
Article
CAS
Google Scholar
Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot. 2013;64(6):1755–67.
Article
CAS
Google Scholar
Zhou J, Wang J, Li X, et al. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J Exp Bot. 2014;65(15):4371–83.
Article
CAS
Google Scholar
Huang Z, Long X, Wang L, Kang J, Zhang Z, Zed R, et al. Growth, photosynthesis and H -ATPase activity in two Jerusalem artichoke varieties under NaCl-induced stress. Process Biochem. 2012;47:591–6.
Article
CAS
Google Scholar
Shi H, Lee BH, Wu SJ, Zhu JK. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol. 2003;21:81–5.
Article
CAS
Google Scholar
Pham-Thi AT, Borrel-Flood C, Vieira da Silva J, Justin AM, Mazliak P. Effects of water stress on lipid metabolism in cotton leaves. Phytochemistry. 1985;24:723–7.
Article
Google Scholar
Ozfidan C, Turkan I, Sekmen AH, Seckin B. Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll fluorescence and osmotic adjustment in Arabidopsis thaliana wild-type (Columbia) and ABA-deficient mutant (aba2). Environ Exp Bot. 2013;86:44–51.
Article
CAS
Google Scholar
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci. 2000;97:11632–7.
Article
CAS
Google Scholar
Young TE, Meeley RB, Gallie DR. ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J. 2004;40:813–25.
Article
CAS
Google Scholar
Singh K. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 2002;5:430–6.
Article
CAS
Google Scholar
Zhang M, Liu W, Bi Y-P. Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses. Hereditas (Beijing). 2009;31:236–44.
Article
Google Scholar
Zhang G, Guo G, Hu X, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res. 2010;20(5):646–54.
Article
CAS
Google Scholar
Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, et al. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J Exp Bot. 2013;64:2155–69.
Article
CAS
Google Scholar
Winicov I. Alfin1 transcription factor over expression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta. 2000;210:416–22.
Article
CAS
Google Scholar
Ramu VS, Swetha TN, Sheela SH, Babitha CK, Rohini S, Reddy MK, et al. Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut. Plant Biotechnol J. 2015;14:1008–20. https://doi.org/10.1111/pbi.12461.
Article
CAS
PubMed
Google Scholar
Lee WY, Lee D, Chung WI, Kwon CS. Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J. 2009;58:511–24.
Article
CAS
Google Scholar
Bastola DR, Pethe VV, Winicov I. Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol. 1998;38:1123–35.
Article
CAS
Google Scholar
Seo Y, Park JB, Cho YJ, Jung C, Seo H, Park S-K, Nahm B, Song J. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cell. 2010;30:271–7.
Article
CAS
Google Scholar
Joo J, Lee YH, Kim YK, Nahm BH, Song SI. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. Mol Cell. 2013;35(5):421–35.
Article
CAS
Google Scholar
Shen Q, Chen CN, Brands A, Pan SM, Ho THD. The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol. 2001;45:327–40.
Article
CAS
Google Scholar
Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of a R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 2007;143:1739–51.
Article
CAS
Google Scholar
Lee SB, Kim H, Kim RJ, Suh MC. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep. 2014;33:1535–46.
Article
CAS
Google Scholar
Sun Y, Yu D. Plant Cell Rep. 2015;34:1295 https://doi.org/10.1007/s00299-015-1787-8.
Article
CAS
Google Scholar
Ning W, Zhai H, Yu J, Liang S, Yang X, Xing X, et al. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol Breed. 2017;37:19.
Article
Google Scholar
Liu W-C, Li Y-H, Yuan H-M, Zhang B-L, Zhai S, Lu Y-T. WD40-REPEAT 5a functions in drought stress tolerance by regulating nitric oxide accumulation in Arabidopsis. Plant Cell Environ. 2016;40:543–52.
Article
Google Scholar
Evans TI, Hell JW, Shea MA. Thermodynamic linkage between calmodulin domains binding calcium and contiguous sites in the C-terminal tail of Ca(V)1.2. Biophys Chem. 2011;159(1):172–87.
Article
CAS
Google Scholar
Reddy AS, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium- and calcium/Calmodulin-regulated gene expression. Plant Cell. 2011;23:2010–32.
Article
CAS
Google Scholar
Janiak A, Kwaśniewski M, Szarejko I. Gene expression regulation in roots under drought. J Exp Bot. 2015;67:1003–14.
Article
Google Scholar
Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, et al. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics. 2013;14:216.
Article
CAS
Google Scholar
Wen F, Wu X, Li T, et al. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon. PLoS One. 2017;12(7):e0180352. Published 2017 Jul 6. doi:https://doi.org/10.1371/journal.pone.0180352
Article
Google Scholar
Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San SB. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in Rice by preventing membrane lipid peroxidation. Plant Physiol. 2014;165(2):688–704.
Article
CAS
Google Scholar
Balan B, Caruso T, Martinelli F. Gaining insight into exclusive and common Transcriptomic features linked with biotic stress responses in Malus. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01569.
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, and Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995; 57(1): 289–300. Retrieved from http://www.jstor.org/stable/2346101.
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11.
Article
CAS
Google Scholar
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–39. https://doi.org/10.1111/j.1365-313X.2004.02016.x.
Article
CAS
PubMed
Google Scholar
Usadel B, Nagel A, Steinhauser D, Gibon Y, Bläsing OE, Redestig H, et al. PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics. 2006;7:535. https://doi.org/10.1186/1471-2105-7-535.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DAW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. https://doi.org/10.1038/nprot.2008.211.
Article
CAS
Google Scholar
Xia J, Benner MJ, & Hancock RE. NetworkAnalyst - integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Research 2014; 42(W1). doi:https://doi.org/10.1093/nar/gku443.
Article
CAS
Google Scholar