Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol. 2011;62:437–60.
Article
CAS
Google Scholar
Scott RJ, Spielman M, Dickinson HG. Stamen structure and function. Plant Cell. 2004;16(suppl 1):S46–60.
Article
CAS
Google Scholar
Xu D, Shi J, Rautengarten C, Yang L, Qian X, Uzair M, et al. Defective Pollen Wall 2 (DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiol. 2017;173(1):240–55.
Article
CAS
Google Scholar
Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics. 2011;38(9):379–90.
Article
CAS
Google Scholar
Quilichini TD, Grienenberger E, Douglas CJ. The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry. 2015;113:170–82.
Article
CAS
Google Scholar
Shi J, Cui M, Yang L, Kim Y-J, Zhang D. Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci. 2015;20:741–53.
Article
CAS
Google Scholar
Ahlers F, Thom I, Lambert J, Kuckuk R, Wiermann R. 1H NMR analysis of sporopollenin from Typha Angustifolia. Phytochemistry. 1999;50(6):1095–8.
Article
CAS
Google Scholar
Piffanelli P, Ross JH, Murphy D. Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod. 1998;11(2):65–80.
Article
CAS
Google Scholar
Scott RJ. Pollen exine-the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead AD, editors. Molecular and cellular aspects of plant reproduction. Cambridge, UK: Cambridge University Press; 1994. p. 49–81.
Chapter
Google Scholar
Li N, Zhang D, Liu H, Yin C, Li X, Liang W, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell. 2006;18(11):2999–3014.
Article
CAS
Google Scholar
Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell. 2010;22(1):91–107.
Article
CAS
Google Scholar
Yang X, Liang W, Chen M, Zhang D, Zhao X, Shi J. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. Planta. 2017;246(1):105–22.
Article
CAS
Google Scholar
Jiang J, Zhang Z, Cao J. Pollen wall development: the associated enzymes and metabolic pathways. Plant Biol. 2013;15(2):249–63.
Article
CAS
Google Scholar
Domínguez E, Mercado JA, Quesada MA, Heredia A. Pollen sporopollenin: degradation and structural elucidation. Sex Plant Reprod. 1999;12(3):171–8.
Article
Google Scholar
Wellman CH. Origin, function and development of the spore wall in early land plants. In: Hemsley AR, Poole I, editors. The evolution of plant physiology: from whole plants to ecosystems. London, UK: Elsevier; 2004. p. 43–63.
Chapter
Google Scholar
Dobritsa AA, Lei Z, Nishikawa S, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis thaliana. Plant Physiol. 2010;153:937–95.
Article
CAS
Google Scholar
Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, de Azevedo SC, Geoffroy P, Heintz D, Krahn D, Kaiser M. LAP6/POLYKETIDE SYNTHASE a and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell. 2010;22(12):4045–66.
Article
CAS
Google Scholar
Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell. 2007;19(5):1473–87.
Article
CAS
Google Scholar
Chen W, Yu X, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol. 2011;157(2):842–53.
Article
CAS
Google Scholar
Shi J, Tan HX, Yu XH, Liu YY, Liang WQ, Ranathunge K, et al. Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell. 2011;23(6):2225–46.
Article
CAS
Google Scholar
Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol. 2014;56(10):979–94.
Article
CAS
Google Scholar
Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Moller BL, Preuss D. CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol. 2009;151:574–89.
Article
CAS
Google Scholar
Li H, Piont F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, et al. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell. 2010;22:173–90.
Article
CAS
Google Scholar
Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J. 2011;65(2):181–93.
Article
CAS
Google Scholar
Zhu L, Shi J, Zhao G, Zhang D, Liang W. Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol. 2013;56:59–68.
Article
CAS
Google Scholar
de Azevedo SC, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ. A novel fatty acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell. 2009;21(2):507–25.
Article
Google Scholar
Wang Y, Lin YC, So J, Du Y, Lo C. Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice. Physiol Plantarum. 2013;149(1):13–24.
Article
CAS
Google Scholar
Zhu X, Yu J, Shi J, Tohge T, Fernie AR, Meir S, et al. The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice. J Integr Plant Biol. 2017;59:612–28.
Article
CAS
Google Scholar
Zou T, Xiao Q, Li W, Luo T, Yuan G, He Z, et al. OsLAP6/OsPKS1, an orthologue of Arabidopsis PKSA/LAP6, is critical for proper pollen exine formation. Rice. 2017;10:53.
Article
Google Scholar
Zou T, Liu M, Xiao Q, Wang T, Chen D, Luo T, et al. OsPKS2 is required for rice male fertility by participating in pollen wall formation. Plant Cell Rep. 2018;37(5):759–73.
Article
CAS
Google Scholar
Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, de Azevedo SC, Heitz T, Douglas CJ, Legrand M. Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell. 2010;22(12):4067–83.
Article
CAS
Google Scholar
Lallemand B, Erhardt M, Heitz T, Legrand M. Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol. 2013;162:615–25.
Article
Google Scholar
Colpitts CC, Kim SS, Posehn SE, Jepson C, Kim SY, Wiedemann G, Reski R, Wee AG, Douglas CJ, Suh DY. PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. New Phytol. 2011;192(4):855–68.
Article
CAS
Google Scholar
Jepson C, Karppinen K, Daku RM, Sterenberg BT, Suh DY. Hypericum perforatum hydroxyalkylpyrone synthase involved in sporopollenin biosynthesis-phylogeny, site-directed mutagenesis, and expression in nonanther tissues. FEBS J. 2014;281(17):3855–68.
Article
CAS
Google Scholar
Qin M, Tian T, Xia S, Wang Z, Song L, Yi B, et al. Heterodimer formation of BnPKSA or BnPKSB with BnACOS5 constitutes a multienzyme complex in tapetal cells and is involved in male reproductive development in Brassica napus. Plant Cell Physiol. 2016;57(8):1643–56.
Article
CAS
Google Scholar
Li Y, Li D, Guo Z, Shi Q, Xiong S, Zhang C, Zhu J, Yang Z. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biol. 2016; 16(1):256.DOI https://doi.org/10.1186/s12870-016-0943-9
Zou T, He Z, Qu L, Liu M, Zeng J, Liang Y, et al. Knockout of OsACOS12 caused male sterility in rice. Mol Breeding. 2017;37(10):126.
Article
Google Scholar
Yau CP, Zhuang CX, Zee SY, Yip WK. Expression of a microsporocyte-specific gene encoding dihydroflavonol 4-reductase-like protein is developmentally regulated during early microsporogenesis in rice. Sex Plant Reprod. 2005;18(2):65–74.
Article
CAS
Google Scholar
Nelson BK, Cai X, Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007;51(6):1126–36.
Article
CAS
Google Scholar
Li H, Zhang D. Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav. 2010;5(9):1121–3.
Article
CAS
Google Scholar
Tang LK, Chu H, Yip WK, Yeung EC, Lo C. An anther-specific dihydroflavonol 4-reductase-like gene (DRL1) is essential for male fertility in Arabidopsis. New Phytol. 2009;181(3):576–87.
Article
CAS
Google Scholar
Zhao G, Shi J, Liang W, Xue F, Luo Q, Zhu L, et al. Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction. Plant Physiol. 2015;169(3):2064–79.
CAS
PubMed
PubMed Central
Google Scholar
Kienow L, Schneider K, Bartsch M, Stuible H, Weng H, Miersch O, Wasternack C, Kombrink E. Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme a synthetase family from Arabidopsis thaliana. J Experimental Botany. 2008;59(2):403–19.
Article
CAS
Google Scholar
Chu H, Liu H, Li H, Wang H, Wei J, Li N, et al. Genetic analysis and mapping of the rice leafy-hull mutant oslh. J Plant Physiol Mol Biol. 2005;31(6):594–8.
CAS
Google Scholar
Kouchi H, Hata S. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet. 1993;238(1–2):106–19.
CAS
PubMed
Google Scholar
Hu C, Tohge T, Chan S, Song Y, Rao J, Cui B, et al. Identification of conserved and diverse metabolic shifts during rice grain development. Sci Rep. 2016. https://doi.org/10.1038/srep20942.