Van Dam J, Faaij AP, Hilbert J, Petruzzi H, Turkenburg W. Large-scale bioenergy production from soybeans and switchgrass in Argentina: part B. Environmental and socio-economic impacts on a regional level. Renew Sust Energ Rev. 2009;13(8):1679–709.
Article
CAS
Google Scholar
Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet. 2017;49(5):773–9.
Article
CAS
PubMed
Google Scholar
Kim E, Hwang S, Lee I. SoyNet: a database of co-functional networks for soybean Glycine max. Nucleic Acids Res. 2016;45(D1):D1082–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sojneková M, Chytrý M. From arable land to species-rich semi-natural grasslands: succession in abandoned fields in a dry region of Central Europe. Ecol Eng. 2015;77:373–81.
Article
Google Scholar
Xie H, Zou J, Jiang H, Zhang N, Choi Y. Spatiotemporal pattern and driving forces of arable land-use intensity in China: toward sustainable land management using emergy analysis. Sustainability. 2014;6(6):3504–20.
Article
Google Scholar
Zhang Q, Li Z, Han B. Immediate responses of cyst nematode, soil-borne pathogens and soybean yield to one-season crop disturbance after continuous soybean in Northeast China. Int J Plant Prod. 2013;7:341–53.
Google Scholar
Liu X, Li Y, Han B, Zhang Q. Yield response of continuous soybean to one-season crop disturbance in a previous continuous soybean field in Northest China. Field Crop Res. 2012;138:52–6.
Article
Google Scholar
Chen X, Wang Y, Li W, Wang Y, Wei D, Wang X, Han X. Impact of long-term continuous soybean cropping on ammonia oxidizing bacteria communities in the rhizosphere of soybean in Northeast China. Acta Agric Scand B—Soil Plant Sci. 2015;65(5):470–8.
CAS
Google Scholar
Chen X. Characterizion of microorganism community in the rhizosphere of continuous cropping soybean in black soil. Univ Chin Acad Sci. 2015;5:12.
Li C, Li X, Kong W, Wu Y, Wang J. Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil. 2010;330(1–2):423–33.
Article
CAS
Google Scholar
Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol. 2013;39(2):232–42.
Article
CAS
PubMed
Google Scholar
Ruan W, Zhu X, Li H, Zhang X, Guo S, Wang J, Zhang F, Gao Y. Soybean autotoxicity: effects of m-hydroxy-phenylacetic acid on cell ultrastructural changes and gene expression in soybean roots. Allelopath J. 2009;24(2):271–82.
Google Scholar
Cui J, Wang Y, Han J, Cai B. Analyses of the community compositions of root rot pathogenic fungi in the soybean rhizosphere soil. Chile J Agric Res. 2016;76(2):179–87.
Article
Google Scholar
Leister D, Wang L, Kleine T. Organellar gene expression and acclimation of plants to environmental stress. Front Plant Sci. 2017;8:387.
Article
PubMed
PubMed Central
Google Scholar
Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environ Mol Mutagen. 2008;49(1):61–72.
Article
CAS
PubMed
Google Scholar
Verhoeven KJ, Jansen JJ, van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185(4):1108–18.
Article
CAS
PubMed
Google Scholar
Zhang M, Kimatu JN, Xu K, Liu B. DNA cytosine methylation in plant development. J Genet Genom. 2010;37(1):1–12.
Article
CAS
Google Scholar
Hewezi T. Editorial: epigenetic regulation of plant development and stress responses. Plant Cell Rep. 2017;37(1):1–2.
Article
PubMed
CAS
Google Scholar
Ganguly DR, Crisp PA, Eichten SR, Pogson BJ. The Arabidopsis DNA methylome is mtable under transgenerational drought stress. Plant Physiol. 2017;175(4):1893–912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang Z, Lei M, Wang X, Tang K, Miki D, Zhang H, Mangrauthia SK, Liu W, Nie W, Ma G, et al. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Mol Cell. 2015;57(6):971–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
He XJ, Chen T, Zhu JK. Regulation and function of DNA methylation in plants and animals. Cell Res. 2011;21(3):442–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15(6):394–408.
Article
CAS
PubMed
Google Scholar
Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet. 2009;43:143–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park J, Frost J, Park K, Ohr H, Park G, Kim S, Eom H, Lee I, Brooks J, Fischer R, et al. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana. Proc Natl Acad Sci. 2017;114(8):2078–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agius F, Kapoor A, Zhu J. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci. 2006;103(31):11796–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales-Ruiz T, Ortega-Galisteo A, Ponferrada-Marín M, Martínez-Macías M, Ariza R, Roldán-Arjona T. Demeter and repressor of silencing 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci. 2006;103(18):6853–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell. 2006;124(3):495–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang Z, Wang Y, Tang K, Tang D, Datsenka T, Cheng J, Zhang Y, Handa AK, Zhu JK. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci. 2017;114(22):E4511–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Viggiano L, de Pinto M: Dynamic DNA methylation patterns in stress response. Plant Epigenetics Springer, Cham 2017:281–302.
Yaish MW, Al-Lawati A, Al-Harrasi I, Patankar HV. Genome-wide DNA methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula). BMC Genomics. 2018;19(1):78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Secco D, Whelan J, Rouached H, Lister R. Nutrient stress-induced chromatin changes in plants. Curr Opin Plant Biol. 2017;39:1–7.
Article
CAS
PubMed
Google Scholar
Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR. Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci. 2012;109(32):E2183–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi CS, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Gen Genomics. 2007;277(5):589–600.
Article
CAS
Google Scholar
Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot. 2011;62(6):1951–60.
Article
CAS
PubMed
Google Scholar
Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem. 2002;277(40):37741–6.
Article
CAS
PubMed
Google Scholar
Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). Plant Cell Rep. 2017;36(5):759–72.
Article
CAS
PubMed
Google Scholar
Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol. 2010;28(10):1097–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adey A, Shendure J. Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res. 2012;22(6):1139–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson IR, Jacobsen SE. Epigenetic inheritance in plants. Nature. 2007;447(7143):418–24.
Article
CAS
PubMed
Google Scholar
Vanyushin B, Ashapkin V. DNA methylation in higher plants: past, present and future. Biochi Biophys Acta Gene Regul Mech. 2011;1809(8):360–8.
Article
CAS
Google Scholar
McClean PE, Mamidi S, McConnell M, Chikara S, Lee R. Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics. 2010;11(1):184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lukens LN, Zhan S. The plant genome's methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol. 2007;10(3):317–22.
Article
CAS
PubMed
Google Scholar
Chinnusamy V, Zhu J-K. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol. 2009;12(2):133–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Zhu JD, Hu FY, Ge S, Ye M. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics. 2012;13(1):300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133:523–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wada Y, Miyamoto K, Kusano T, Sano H. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Gen Genomics. 2004;271(6):658–66.
Article
CAS
Google Scholar
Lippman Z, Gendrel A-V, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD. Role of transposable elements in heterochromatin and epigenetic control. Nature. 2004;430(6998):471–6.
Article
CAS
PubMed
Google Scholar
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.
Article
CAS
PubMed
Google Scholar
Deleris A, Halter T, Navarro L. DNA methylation and demethylation in plant immunity. Annu Rev Phytopathol. 2016;54:579–603.
Article
CAS
PubMed
Google Scholar
Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I. Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res. 2007;35(5):1714–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira LJ, Azevedo V, Maroco J, Oliveira MM, Santos AP. Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress. PLoS One. 2015;10(5):e0124060.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bocchini M, Bartucca ML, Ciancaleoni S, Mimmo T, Cesco S, Pii Y, Albertini E, Del Buono D. Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation. Front Plant Sci. 2015;6:514.
Article
PubMed
PubMed Central
Google Scholar
Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. 2002;4(6):694–9.
Article
CAS
Google Scholar
Kovar A, Koukalova B, Bezde M, Opatrn Z. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet. 1997;95(1–2):301–6.
Google Scholar
Sabbah S, Raise M, Tal M. Methylation of DNA in NaCl-adapted cells of potato. Plant Cell Rep. 1995;14(7):467–70.
Article
CAS
PubMed
Google Scholar
Varriale A. DNA methylation in plants and its implications in development, hybrid vigour, and evolution. Plant Epigenetics. Cham: Springer; 2017. p. 263–80.
Google Scholar
Takuno S, Ran J, Gaut B. Evolutionary patterns of genic DNA methylation vary across land plants. Nat Plants. 2016;2:15222.
Article
CAS
PubMed
Google Scholar
Patil V, Ward RL, Hesson LB. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics. 2014;9(6):823–8.
Article
PubMed
PubMed Central
Google Scholar
Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr Biol. 2007;17(1):54–9.
Article
CAS
PubMed
Google Scholar
Drohat AC, Coey CT. Role of base excision “repair” enzymes in erasing epigenetic marks from DNA. Chem Rev. 2016;116(20):12711–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaquero-Sedas MI, Gamez-Arjona FM, Vega-Palas MA. Arabidopsis thaliana telomeres exhibit euchromatic features. Nucleic Acids Res. 2011;39(6):2007–17.
Article
CAS
PubMed
Google Scholar
Vega-Vaquero A, Bonora G, Morselli M, Vaquero-Sedas MI, Rubbi L, Pellegrini M, Vega-Palas M. Novel features of telomere biology revealed by the absence of telomeric DNA methylation. Genome Res. 2016;26(8):1047–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo W, Fiziev P, Yan W, Cokus S, Sun X, Zhang MQ, Chen P-Y, Pellegrini M. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics. 2013;14(1):774.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández S, Eritja R, Aviñó A, Jaumot J, Gargallo R. Influence of pH, temperature and the cationic porphyrin TMPyP4 on the stability of the i-motif formed by the 5′-(C 3 TA 2) 4-3′ sequence of the human telomere. Int J Biol Macromol. 2011;49(4):729–36.
Article
PubMed
CAS
Google Scholar
Schoeftner S, Blasco MA. A ‘higher order’ of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J. 2009;28(16):2323–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17(2):215–22.
Article
CAS
PubMed
Google Scholar
Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruenbaum Y, Naveh-Many T, Cedar H, Razin A. Sequence specificity of methylation in higher plant DNA. Nature. 1981;292(5826):860–2.
Article
CAS
PubMed
Google Scholar
Pelizzola M, Ecker JR. The DNA methylome. FEBS Lett. 2011;585(13):1994–2000.
Article
CAS
PubMed
Google Scholar
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci. 2000;97(10):5237–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plaxton WC. The organization and regulation of plant glycolysis. Annu Rev Plant Biol. 1996;47:185–214.
Article
CAS
Google Scholar
Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 2012;35(2):334–46.
Article
CAS
PubMed
Google Scholar
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. Glutathione in plants: an integrated overview. Plant Cell Environ. 2012;35(2):454–84.
Article
CAS
PubMed
Google Scholar
Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011;155(1):93–100.
Article
CAS
PubMed
Google Scholar
Nazar R, Iqbal N, Syeed S, Khan N. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol. 2011;168(8):807–15.
Article
CAS
PubMed
Google Scholar
Pál M, Kovács V, Szalai G, Soós V, Ma X, Liu H, Mei H, Janda T. Salicylic acid and abiotic stress responses in rice. J Agron Crop Sci. 2014;200(1):1–11.
Article
CAS
Google Scholar
Capaldi FR, Gratão PL, Reis AR, Lima LW, Azevedo RA. Sulfur metabolism and stress defense responses in plants. Trop Plant Biol. 2015;8(3–4):60–73.
Article
CAS
Google Scholar
Lu SC. S-adenosylmethionine. Int J Biochem Cell Biol. 2000;32(4):391–5.
Article
CAS
PubMed
Google Scholar
Fuso A, Seminara L, Cavallaro RA, D'Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci. 2005;28(1):195–204.
Article
CAS
PubMed
Google Scholar
Marco F, Alcazar R, Tiburcio AF, Carrasco P. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS. 2011;15(11):775–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiburcio AF, Altabella T, Bitrián M, Alcázar R. The roles of polyamines during the lifespan of plants: from development to stress. Planta. 2014;240(1):1–18.
Article
CAS
PubMed
Google Scholar
Pathak MR, Teixeira da Silva JA, Wani SH. Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food. 2014;5(2):87–96.
Article
PubMed
PubMed Central
Google Scholar
Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci. 2014;5:175.
Article
PubMed
PubMed Central
Google Scholar
Gupta K, Dey A, Gupta B. Plant polyamines in abiotic stress responses. Acta Physiol Plant. 2013;35(7):2015–36.
Article
CAS
Google Scholar
Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, Minocha SC. Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci. 2016;7:78.
Article
PubMed
PubMed Central
Google Scholar
Akcay N, Bor M, Karabudak T, Ozdemir F, Turkan I. Contribution of gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol. 2012;169(5):452–8.
Article
CAS
PubMed
Google Scholar
Hussain SS, Ali M, Ahmad M, Siddique K. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv. 2011;29(3):300–11.
Article
CAS
PubMed
Google Scholar
Bitrian M, Zarza X, Altabella T, Tiburcio AF, Alcazar R. Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites. 2012;2(3):516–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter G, Todd CD, Trovato M, Forlani G, Funck D. Physiological implications of arginine metabolism in plants. Front Plant Sci. 2015;6:534.
Article
PubMed
PubMed Central
Google Scholar
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. Mol Plant. 2015;8(4):506–20.
Article
CAS
PubMed
Google Scholar
Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell. 2007;19(1):351–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Upchurch RG. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett. 2008;30(6):967–77.
Article
CAS
PubMed
Google Scholar
Kachroo A, Kachroo P. Fatty acid-derived signals in plant defense. Annu Rev Phytopathol. 2009;47:153–76.
Article
CAS
PubMed
Google Scholar
Creelman RA, Mulpuri R. The oxylipin pathway in Arabidopsis. Arabidopsis Book. 2002;1:e0012.
Article
PubMed
PubMed Central
Google Scholar
Tuteja N, Ahmad P, Panda BB, Tuteja R. Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res. 2009;681(2–3):134–49.
Article
CAS
PubMed
Google Scholar
Balestrazzi A, Confalonieri M, Macovei A, Dona M, Carbonera D. Genotoxic stress, DNA repair, and crop productivity. In: Tuteja N, Gill SS, editors. Crop improvement under adverse conditions. Berlin: Springer; 2012. p. 153–70.
Google Scholar
Filichkin S, Priest HD, Megraw M, Mockler TC. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. Curr Opin Plant Biol. 2015;24:125–35.
Article
CAS
PubMed
Google Scholar
Liu JX, Howell SH. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell. 2010;22(9):2930–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakaminami K, Matsui A, Shinozaki K, Seki M. RNA regulation in plant abiotic stress responses. Biochim Biophys Acta Gene Regul Mech. 2012;1819(2):149–53.
Article
CAS
Google Scholar
Howell SH. Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol. 2013;64:477–99.
Article
CAS
PubMed
Google Scholar
Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, Zhang H, Zhang G, Li D, Dong Y. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol. 2010;28(5):516–20.
Article
CAS
PubMed
Google Scholar
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.
Article
CAS
PubMed
PubMed Central
Google Scholar