Ballhorn DJ, Kautz S, Schadler M. Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia. 2013;172:833–46.
Article
PubMed Central
Google Scholar
Bendara M, Ekesi S, Ndung’u M, Srinivasan R, Torto B. A major host plant volatile, 1-octen-3-ol, contributes to mating in the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera:Crambidae). Naturwissenschaften. 2015;102:47.
Article
Google Scholar
Broz AK, Broeckling CD, De-La-Pena C, Lewis MR, Greene E, Callaway RM, Sumner LW, Vivanco JM. Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol. 2010;10:115.
Article
PubMed Central
Google Scholar
Clavijo McCormick A, Irmisch S, Reinecke A, Boeckler GA, Veit D, Reichelt M, Hansson BS, Gershenzon J, Köllner TG, Unsicker SB. Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Plant Cell and Environment. 2014a;37:1909–23.
Article
Google Scholar
Clavijo McCormick A, Unsicker SB, Gershenzon J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 2012;17:303–10.
Article
CAS
PubMed Central
Google Scholar
Clavijo McCormick AC, Gershenzon J, Unsicker SB. Little peaks with big effects: establishing the role of minor plant volatiles in plant-insect interactions. Plant Cell and Environment. 2014b;37:1836–44.
Article
Google Scholar
Crawley MJ. The R Book: John Wiley & Sons, Ltd; 2007. https://doi.org/10.1002/9780470515075.
Dassler A, Roscher C, Temperton VM, Schumacher J, Schulze ED. Adaptive survival mechanisms and growth limitations of small-stature herb species across a plant diversity gradient. Plant Biol. 2008;10:573–87.
Article
CAS
PubMed Central
Google Scholar
Dicke M. Behavioural and community ecology of plants that cry for help. Plant Cell and Environment. 2009;32:654–65.
Article
CAS
Google Scholar
Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 2010;15:167–75.
Article
CAS
Google Scholar
Dicke M, van Poecke RMP, de Boer JG. Inducible indirect defence of plants: from mechanisms to ecological functions. Basic and Appl Ecology. 2003;4:27–42.
Article
CAS
Google Scholar
Ebeling A, Klein A-M, Schumacher J, Weisser WW, Tscharntke T. How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos. 2008;117:1808–15.
Article
Google Scholar
Ebeling A, Hines J, Hertzog LR, Lange M, Meyer ST, Simons NK, Weisser WW. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic and Appl Ecology. 2017;26(2018)50–63.
Eberl F, Hammerbacher A, Gershenzon J, Unsicker SB. Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. The New Phytologist. 2017. https://doi.org/10.1111/nph.14565.
Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A. 2004;101:1781–5.
Article
CAS
PubMed Central
Google Scholar
Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC. Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun. 2015;6:6273.
Article
CAS
PubMed Central
Google Scholar
Fontana A, Reichelt M, Hempel S, Gershenzon J, Unsicker SB. The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol. 2009;35:833–43.
Article
CAS
PubMed Central
Google Scholar
Frost CJ, Appel M, Carlson JE, De Moraes CM, Mescher MC, Schultz JC. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett. 2007;10:490–8.
Article
Google Scholar
Gols R, Bukovinszky T, Hemerik L, Harvey JA, Van Lenteren JC, Vet LEM. Reduced foraging efficiency of a parasitoid under habitat complexity: implications for population stability and species coexistence. J Anim Ecol. 2005;74:1059–68.
Article
Google Scholar
Gouinguene SP, Turlings TCJ. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 2002;129:1296–307.
Article
CAS
PubMed Central
Google Scholar
Gubsch M, Roscher C, Gleixner G, Habekost M, Lipowsky A, Schmid B, Schulze E-D, Steinbeiss S, Buchmann N. Foliar and soil delta 15N values reveal increased nitrogen partitioning among species in diverse grassland communities. Plant Cell and Environment. 2011a;34:895–908.
Article
CAS
Google Scholar
Hare JD. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol. 2011;56:161–80.
Article
CAS
PubMed Central
Google Scholar
Hilker M, McNeil J. Chemical and behavioral ecology in insect parasitoids: how to behave optimally in a complex odorous environment. In: Wajnberg E, Bernstein C, van Alphen J, editors. Behavioral ecology of insect parasitoids: from theoretical approaches to field applications. Malden: Wiley-Blackwell; 2008. p. 92–112.
Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK. Birch (Betula spp) leaves adsorb and re-release volatiles specific to neighbouring plants - a mechanism for associational herbivore resistance? New Phytol. 2010;186:722–32.
Article
CAS
PubMed Central
Google Scholar
Hogh-Jensen H, Schjoerring JK. Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant Soil. 1997;197:187–99.
Article
CAS
Google Scholar
Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010;15:176–84.
Article
CAS
PubMed Central
Google Scholar
Johnson D, Gilbert L. Interplant signalling through hyphal networks. New Phytol. 2015;205:1448–53.
Article
PubMed Central
Google Scholar
Junker RR, Bluethgen N. Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot. 2010;105:777–82.
Article
PubMed Central
Google Scholar
Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia. 2000;125:66–71.
Article
CAS
PubMed Central
Google Scholar
Karban R, Shiojiri K, Ishizaki S, Wetzel WC, Evans RY. Kin recognition affects plant communication and defence. Proc R Soc B Biol Sci. 2013;280:20123062.
Article
Google Scholar
Kegge W, Pierik R. Biogenic volatile organic compounds and plant competition. Trends Plant Sci. 2010;15:126–32.
Article
CAS
PubMed Central
Google Scholar
Kegge W, Weldegergis BT, Soler R, Vergeer-Van Eijk M, Dicke M, Voesenek LA, Pierik R. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. New Phytol. 2013;200:861–74.
Article
CAS
PubMed Central
Google Scholar
Kempel A, Schmidt AK, Brandl R, Schadler M. Support from the underground: induced plant resistance depends on arbuscular mycorrhizal fungi. Funct Ecol. 2010;24:293–300.
Article
Google Scholar
Kigathi RN, Unsicker SB, Reichelt M, Kesselmeier J, Gershenzon J, Weisser WW. Emission of volatile organic compounds after herbivory from Trifolium pratense (L) under laboratory and field conditions. J Chem Ecol. 2009;35:1335–48.
Article
CAS
PubMed Central
Google Scholar
Kigathi RN, Weisser WW, Veit D, Gershenzon J, Unsicker SB. Plants suppress their emission of volatiles when growing with conspecifics. J Chem Ecol. 2013;39:537–45.
Article
CAS
PubMed Central
Google Scholar
Kost C, Heil M. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol. 2006;94:619–28.
Article
CAS
Google Scholar
Leitner M, Boland W, Mithofer A. Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytol. 2005;167:597–606.
Article
CAS
PubMed Central
Google Scholar
Leitner M, Kaiser R, Hause B, Boland W, Mithofer A. Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula? Mycorrhiza. 2010;20:89–101.
Article
PubMed Central
Google Scholar
Loranger H, Weisser WW, Ebeling A, Eggers T, De Luca E, Loranger J, Roscher C, Meyer ST. Invertebrate herbivory increases along an experimental gradient of grassland plant diversity. Oecologia. 2014;174:183–93.
Article
PubMed Central
Google Scholar
Loreto F, Pollastri S, Fineschi S, Velikova V. Volatile isoprenoids and their importance for protection against environmental constraints in the Mediterranean area. Environ Exp Bot. 2014;103:99–106.
Article
CAS
Google Scholar
Meiners T. Chemical ecology and evolution of plant-insect interactions: a multitrophic perspective. Current Opinion in Insect Science. 2015;8:22–8.
Article
Google Scholar
Meiners T. In: Blande JD, Glinwood R, editors. Ecological Role of Odour Diversity In: Deciphering Chemical Language of Plant Communication; 2016. p. 137–51.
Chapter
Google Scholar
Mraja A, Unsicker SB, Reichelt M, Gershenzon J, Roscher C. Plant community diversity influences allocation to direct chemical defence in Plantago lanceolata. PLoS One. 2011;6:e28055.
Article
CAS
PubMed Central
Google Scholar
Mumm R, Dicke M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool-Revue Canadienne De Zoologie. 2010;88:628–67.
Article
CAS
Google Scholar
Oikawa PY, Lerdau MT. Catabolism of volatile organic compounds influences plant survival. Trends Plant Sci. 2013;18:695–703.
Article
CAS
Google Scholar
Ozawa R, Shimoda T, Kawaguchi M, Arimura G, Horiuchi J, Nishioka T, Takabayashi J. Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J Plant Res. 2000;113:427–33.
Article
Google Scholar
Pierik R, Ballare CL, Dicke M. Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ. 2014;37:1845–53.
Article
Google Scholar
Randlkofer B, Obermaier E, Casas J, Meiners T. Connectivity counts: disentangling effects of vegetation structure elements on the searching movement of a parasitoid. Ecol Entomol. 2010a;35:446–55.
Google Scholar
Randlkofer B, Obermaier E, Hilker M, Meiners T. Vegetation complexity: the influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic and Appl Ecol. 2010b;11:383–95.
Article
CAS
Google Scholar
Rodriguez A, Alquezar B, Pena L. Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 2013;197:36–48.
Article
CAS
Google Scholar
Roscher C, Thein S, Weigelt A, Temperton VM, Buchmann N, Schulze E-D. N-2 fixation and performance of 12 legume species in a 6-year grassland biodiversity experiment. Plant Soil. 2011b;341:333–48.
Article
CAS
Google Scholar
Schmelz EA, Alborn HT, Engelberth J, Tumlinson JH. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiology. 2003;133:295–306.
Article
CAS
PubMed Central
Google Scholar
Schroeder R, Hilker M. The relevance of background odor in resource location by insects: a behavioral approach. Bioscience. 2008;58:308–16.
Article
Google Scholar
Snoeren TAL, De Jong PW, Dicke M. Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. J Ecol. 2007;95:17–26.
Article
CAS
Google Scholar
Tabata J, De Moraes CM, Mescher MC. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle. PLoS One. 2011;6(8):e23799.
Article
CAS
PubMed Central
Google Scholar
Thein S, Roscher C, Schulze E-D. Effects of trait plasticity on aboveground biomass production depend on species identity in experimental grasslands. Basic Appl Ecol. 2008;9:475–84.
Article
Google Scholar
Unsicker SB, Franzke A, Specht J, Kohler G, Linz J, Renker C, Stein C, Weisser WW. Plant species richness in montane grasslands affects the fitness of a generalist grasshopper species. Ecology. 2010;91:1083–91.
Article
Google Scholar
Unsicker SB, Kunert G, Gershenzon J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol. 2009;12:479–85.
Article
CAS
Google Scholar
Waschke N, Hardge K, Hancock C, Hilker M, Obermaier E, Meiners T. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation? PLoS One. 2014;9:e85152.
Article
PubMed Central
Google Scholar
Weisser WW, Roscher C, Meyer ST, Ebeling A, Luo G, Allan E, Beßler H, Barnard RL, Buchmann N, Buscot F, Engels C, Fischer C, Fischer M, Gessler A, Gleixner G, Halle S, Hildebrandt A, Hillebrand H, de Kroon H, Lange M, Leimer S, Le Roux X, Milcu A, Mommer L, Niklaus PA, Oelmann Y, Proulx R, Roy J, Scherber C, Scherer-Lorenzen M, Scheu S, Tscharntke T, Wachendorf M, Wagg C, Weigelt A, Wilcke W, Wirth C, Schulze E-D, Schmid B, Eisenhauer N. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl Ecol. 2017;23:1–73.
Article
Google Scholar
Wood WF, Archer CL, Largent DL. 1-Octen-3-ol, a banana slug antifeedant from mushrooms. Biochem Syst Ecol. 2001;29:531–3.
Article
CAS
PubMed Central
Google Scholar