Hager A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res. 2003;116:483–505.
Article
PubMed
CAS
Google Scholar
Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer CS, Haga K, et al. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci U S A. 1999;96:12186–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Becker D, Hedrich R. Channelling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol Biol. 2002;49:349–56.
Article
PubMed
CAS
Google Scholar
Martinoia E, Meyer S, De Angeli A, Nagy R. Vacuolar transporters in their physiological context. Annu Rev Plant Biol. 2012;63:183–213.
Article
PubMed
CAS
Google Scholar
Zhang C, Hicks GR, Raikhel NV. Plant vacuole morphology and vacuolar trafficking. Front Plant Sci. 2014;5:476.
PubMed
PubMed Central
Google Scholar
Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun. 2013;4:2625.
Sauer M, Robert S, Kleine-Vehn J. Auxin: simply complicated. J Exp Bot. 2013;64:2565–77.
Article
PubMed
CAS
Google Scholar
Löfke C, Dünser K, Scheuring D, Kleine-Vehn J. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife. 2015;4:e05868.
Article
PubMed Central
CAS
Google Scholar
Dünser K, Kleine-Vehn J. Differential growth regulation in plants - the acid growth balloon theory. Curr Opin Plant Biol. 2015;28:55–9.
Article
PubMed
CAS
Google Scholar
Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, et al. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature. 2005;434:404–8.
Article
PubMed
CAS
Google Scholar
Ishibashi K, Suzuki M, Imai M. Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem Biophys Res Commun. 2000;270:370–6.
Article
PubMed
CAS
Google Scholar
Schulze C, Sticht H, Meyerhoff P, Dietrich P. Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1. Plant J. 2011;68:424–32.
Article
PubMed
CAS
Google Scholar
Hedrich R, Marten I. TPC1-SV channels gain shape. Mol Plant. 2011;4:428–41.
Article
PubMed
CAS
Google Scholar
Hedrich R, Neher E. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature. 1987;329:833–6.
Article
Google Scholar
Dadacz-Narloch B, Beyhl D, Larisch C, López-Sanjurjo EJ, Reski R, Kuchitsu K, et al. A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell. 2011;23:2696–707.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hedrich R, Flügge UI, Fernandez JM. Patch-clamp studies of ion transport in isolated plant vacuoles. FEBS Lett. 1986;204:228–32.
Article
CAS
Google Scholar
Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, et al. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature. 2016;531:196–201.
Article
PubMed
CAS
Google Scholar
Kintzer AF, Stroud RM. Structure, inhibition, and regulatory sites of TPC1 from Arabidopsis thaliana. Nature. 2016;531(7593):258.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jaślan D, Mueller TD, Becker D, Schultz J, Cuin TA, Marten I, et al. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain. Plant Biol. 2016;18:750–60.
Article
PubMed
CAS
Google Scholar
Carpaneto A, Cantù AM, Gambale F. Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett. 1999;442:129–32.
Article
PubMed
CAS
Google Scholar
Dobrovinskaya OR, Muniz J, Pottosin II. Inhibition of vacuolar ion channels by polyamines. J Membr Biol. 1999;167:127–40.
Article
PubMed
CAS
Google Scholar
Dziubińska H, Filek M, Szechyńska-Hebda M, Trębacz K. Slow vacuolar channels of non-embryogenic and embryogenic cultures of winter wheat. Acta Physiol Plant. 2003;25:179–84.
Article
Google Scholar
Dziubinska H, Filek M, Krol E, Trebacz K. Slow vacuolar channels in vacuoles from winter and spring varieties of rape (Brassica napus). J Plant Physiol. 2008;165:1511–8.
Article
PubMed
CAS
Google Scholar
Dziubinska H, Filek M, Krol E, Trebacz K. Cadmium and selenium modulate slow vacuolar channels in rape (Brassica napus) vacuoles. J Plant Physiol. 2010;167:1566–70.
Article
PubMed
CAS
Google Scholar
Pottosin II, Dobrovinskaya OR, Muniz J. Conduction of monovalent and divalent cations in the slow vacuolar channel. J Membr Biol. 2001;181:55–65.
Article
PubMed
CAS
Google Scholar
Pottosin II, Wherrett T, Shabala S. SV channels dominate the vacuolar Ca2+ release during intracellular signaling. FEBS Lett. 2009;583:921–6.
Article
PubMed
CAS
Google Scholar
Wang Y, Dindas J, Rienmüller F, Krebs M, Waadt R, Schumacher K, et al. Cytosolic Ca2+ signals enhance the vacuolar ion conductivity of bulging Arabidopsis root hair cells. Mol Plant. 2015;8:1665–74.
Article
PubMed
CAS
Google Scholar
Maathuis FJ, Prins HB. Inhibition of inward rectifying tonoplast channels by a vacuolar factor: physiological and kinetic implications. J Membr Biol. 1991;122:251–8.
Article
PubMed
CAS
Google Scholar
Kramer EM, Ackelsberg EM. Do vacuoles obscure the evidence for auxin homeostasis? Mol Plant. 2016;9:4–6.
Article
PubMed
CAS
Google Scholar
Doll S, Hauer R. Determination of the membrane potential of vacuoles isolated from red-beet storage tissue. Planta. 1981;152:153–8.
Article
PubMed
CAS
Google Scholar
Miller AJ, Brimelow JJ, John P. Membrane-potential changes in vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta. 1984;160:59–65.
Article
PubMed
CAS
Google Scholar
Hedrich R. Ion channels in plants. Physiol Rev. 2012;92:1777–811.
Article
PubMed
CAS
Google Scholar
Schulz-Lessdorf B, Hedrich R. Protons and calcium modulate SV-type channels in the vacuolar-lysosomal compartment - channel interaction with calmodulin inhibitors. Planta. 1995;197:655–71.
Article
CAS
Google Scholar
Gambale F, Bregante M, Stragapede F, Cantu AM. Ionic channels of the sugar beet tonoplast are regulated by a multi-ion single-file permeation mechanism. J Membr Biol. 1996;154:69–79.
Article
PubMed
CAS
Google Scholar
de Melo MP, de Lima TM, Pithon-Curi TC, Curi R. The mechanism of indole acetic acid cytotoxicity. Toxicol Lett. 2004;148:103–11.
Article
PubMed
CAS
Google Scholar
Celik I, Tuluce Y, Isik I. Influence of subacute treatment of some plant growth regulators on serum marker enzymes and erythrocyte and tissue antioxidant defense and lipid peroxidation in rats. J Biochem Mol Toxicol. 2006;20:174–82.
Article
PubMed
CAS
Google Scholar
Hąc-Wydro K, Sroka A, Jabłońska K. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead (II) ions in the organization of model lipid membranes. Colloids Surfaces B. 2016;143:124–30.
Article
CAS
Google Scholar
Burdach Z, Kurtyka R, Siemieniuk A, Karcz W. Role of chloride ions in the promotion of auxin-induced growth of maize coleoptile segments. Ann Bot. 2014;114:1023–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coyaud L, Kurkdjian A, Kado R, Hedrich R. Ion channels and ATP-driven pumps involved in ion transport across the tonoplast of sugarbeet vacuoles. Biochim Biophys Acta. 1987;902:263–8.
Article
CAS
Google Scholar
Trela Z, Burdach Z, Siemieniuk A, Przestalski S, Karcz W. Effect of Trimethyltin chloride on slow vacuolar (SV) channels in vacuoles from red beet (Beta vulgaris L.) taproots. PLoS One. 2015;10:e0136346.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bertl A, Blumwald E, Coronado R, Eisenberg R, Findlay G, Gradmann D, et al. Electrical measurements on endomembranes. Science. 1992;258:873–4.
Article
PubMed
CAS
Google Scholar
Molleman A. Patch clamping: an introductory guide to patch clamp electrophysiology. Chichester: Wiley; 2003.