Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R, Ooi LCL, Ooi SE, Chan KL, Halim MA. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature. 2013;500(7462):335–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee M, Xia JH, Zou Z, Ye J, Alfiko Y, Jin J, Lieando JV, Purnamasari MI, Lim CH, Suwanto A, Wong L, Chua NH, Yue GH. A consensus linkage map of oil palm and a major QTL for stem height. Sci Rep. 2015;5:8232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morcillo F, Cros D, Billotte N, Ngando-Ebongue GF, Domonhédo H, Pizot M, Cuéllar T, Espéout S, Dhouib R, Bourgis F. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nat Commun. 2013;4:2160.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corley RHV, Tinker P: The oil palm: John Wiley & Sons; 2008.
Google Scholar
Syed R, Pushparajah E, Soon CP: Insect pollination of oil palm: feasibility of introducing Elaeidobius spp. into Malaysia. In: The oil palm in the eighties A report of the Proceedings of the International Conference on Oil Palm in Agriculture in the Eighties, Kuala Lumpur, 17–20 June 1981 Volume I: 1982. Incorporated Society of Planters: 263–289.
Hussein M, Lajis N, Ali J. Biological and chemical factors associated with the successful introduction of Elaeidobius kamerunicus Faust, the oil palm pollinator in Malaysia. Acta Hort. 1990;288:81–7.
Google Scholar
Koeduka T, Fridman E, Gang DR, Vassão DG, Jackson BL, Kish CM, Orlova I, Spassova SM, Lewis NG, Noel JP. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc Natl Acad Sci U S A. 2006;103(26):10128–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan KH, Nishida R. Methyl eugenol: its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J Insect Sci. 2012;12(1):56.
PubMed
PubMed Central
Google Scholar
Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 2001;125(2):539–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant. 2015;8(5):689–708.
Article
CAS
PubMed
Google Scholar
Zhao Q, Dixon RA. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci. 2011;16(4):227–33.
Article
CAS
PubMed
Google Scholar
Bonawitz ND, Chapple C. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet. 2010;44:337–63.
Article
CAS
PubMed
Google Scholar
Muhlemann JK, Woodworth BD, Morgan JA, Dudareva N. The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers. New Phytol. 2014;204(3):661–70.
Article
CAS
PubMed
Google Scholar
Hatton D, Sablowski R, Yung MH, Smith C, Schuch W, Bevan M. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant J. 1995;7(6):859–76.
Article
CAS
PubMed
Google Scholar
Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 2003;133(3):1051–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DG, Wang H, Jackson L, Tang Y, Neal Stewart C. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol. 2012;193(1):121–36.
Article
CAS
PubMed
Google Scholar
Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 2001;4(5):447–56.
Article
CAS
PubMed
Google Scholar
Vélez-Bermúdez IC, Salazar-Henao JE, Fornalé S, López-Vidriero I, Franco-Zorrilla JM, Grotewold E, Gray J, Solano R, Schmidt W, Pagés M, MYB A. ZML complex regulates wound-induced lignin genes in maize. Plant Cell. 2015;27(11):3245–59.
Article
PubMed
PubMed Central
Google Scholar
Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell. 1998;10(2):135–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 2000;19(22):6150–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J. 2004;40(6):979–95.
Article
CAS
PubMed
Google Scholar
Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A. EgMYB1, an R2R3-MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol. 2010;188(3):774–86.
Article
CAS
PubMed
Google Scholar
Zhu L, Shan H, Chen S, Jiang J, Gu C, Zhou G, Chen Y, Song A, Chen F. The heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB1 alters lignin composition and represses flavonoid synthesis in Arabidopsis thaliana. PLoS One. 2013;8(6):e65680.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fornalé S, Sonbol FM, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol. 2006;62(6):809–23.
Article
PubMed
Google Scholar
Sonbol FM, Fornalé S, Capellades M, Encina A, Touriño S, Torres JL, Rovira P, Ruel K, Puigdomenech P, Rigau J. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Mol Biol. 2009;70(3):283–96.
Article
CAS
PubMed
Google Scholar
Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres JL, Rovira P, Puigdomènech P. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J. 2010;64(4):633–44.
Article
PubMed
Google Scholar
Agarwal T, Grotewold E, Doseff AI, Gray J. MYB31/MYB42 Syntelogs exhibit divergent regulation of phenylpropanoid genes in maize, sorghum and rice. Sci Rep. 2016;6:28502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tak H, Negi S, Ganapathi T. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana. PLoS One. 2017;12(2):e0172695.
Article
PubMed
PubMed Central
Google Scholar
Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC. ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell. 2005;17(5):1612–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spitzer-Rimon B, Marhevka E, Barkai O, Marton I, Edelbaum O, Masci T, Prathapani NK, Shklarman E, Ovadis M, Vainstein A. EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in petunia. Plant Cell. 2010;22(6):1961–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colquhoun TA, Schwieterman ML, Wedde AE, Schimmel BC, Marciniak DM, Verdonk JC, Kim JY, Oh Y, Gális I, Baldwin IT. EOBII controls flower opening by functioning as a general transcriptomic switch. Plant Physiol. 2011;156(2):974–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spitzer-Rimon B, Farhi M, Albo B, Cna’ani A, MMB Z, Masci T, Edelbaum O, Yu Y, Shklarman E, Ovadis M. The R2R3-MYB–like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia. Plant Cell. 2012;24(12):5089–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colquhoun TA, Kim JY, Wedde AE, Levin LA, Schmitt KC, Schuurink RC, Clark DG. PhMYB4 fine-tunes the floral volatile signature of Petunia× hybrida through PhC4H. J Exp Bot. 2010;62(3):1133–43.
Article
PubMed
PubMed Central
Google Scholar
Zvi MMB, Negre-Zakharov F, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J. 2008;6(4):403–15.
Article
PubMed
Google Scholar
Zvi MMB, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol. 2012;195(2):335–45.
Article
PubMed
Google Scholar
Medina-Puche L, Molina-Hidalgo FJ, Boersma MR, Schuurink RC, López-Vidriero I, Solano R, Franco-Zorrilla J-M, Caballero JL, Blanco-Portales R, Muñoz-Blanco J. A R2R3-MYB transcription factor (FaEOBII) regulates eugenol production in ripe strawberry (Fragaria× ananassa) fruit receptacles. Plant Physiol. 2015;168:598–614.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misztal PK, Owen SM, Guenther AB, Rasmussen R, Geron C, Harley P, Phillips GJ, Ryan A, Edwards DP, Hewitt CN. Large estragole fluxes from oil palms in Borneo. Atmos Chem Phys. 2010;10:4343–58.
Article
CAS
Google Scholar
Barcelos E, de Almeida Rios S, Cunha RN, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci. 2015;6:190.
Article
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vom Endt D, Kijne JW, Memelink J. Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry. 2002;61(2):107–14.
Article
CAS
PubMed
Google Scholar
Smaczniak C, Immink RG, Angenent GC, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development. 2012;139(17):3081–98.
Article
CAS
PubMed
Google Scholar
Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G. Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell. 2008;20(11):2960–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet. 2009;5(3):e1000440.
Article
PubMed
PubMed Central
Google Scholar
Mandaokar A, Thines B, Shin B, Markus Lange B, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 2006;46(6):984–1008.
Article
CAS
PubMed
Google Scholar
Mandaokar A. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol. 2009;149(2):851–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humphreys JM, Chapple C. Rewriting the lignin roadmap. Curr Opin Plant Biol. 2002;5(3):224–9.
Article
CAS
PubMed
Google Scholar
Koeduka T, Louie GV, Orlova I, Kish CM, Ibdah M, Wilkerson CG, Bowman ME, Baiga TJ, Noel JP, Dudareva N. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J. 2008;54(3):362–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koeduka T, Orlova I, Baiga TJ, Noel JP, Dudareva N, Pichersky E. The lack of floral synthesis and emission of isoeugenol in Petunia axillaris subsp. parodii is due to a mutation in the isoeugenol synthase gene. Plant J. 2009;58(6):961–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aragüez I, Osorio S, Hoffmann T, Rambla JL, Medina-Escobar N, Granell A, Botella MÁ, Schwab W, Valpuesta V. Eugenol production in achenes and receptacles of strawberry fruits is catalyzed by synthases exhibiting distinct kinetics. Plant Physiol. 2013;163(2):946–58.
Article
PubMed
PubMed Central
Google Scholar
Koeduka T, Baiga TJ, Noel JP, Pichersky E. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol. 2009;149(1):384–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vassão DG, Kim S-J, Milhollan JK, Eichinger D, Davin LB, Lewis NG. A pinoresinol–lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol. Arch Biochem Biophys. 2007;465(1):209–18.
Article
PubMed
Google Scholar
Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E. Characterization of phenylpropene O-methyltransferases from sweet basil facile change of substrate specificity and convergent eevolution within a plant O-methyltransferase family. Plant Cell. 2002;14(2):505–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yauk YK, Chagné D, Tomes S, Matich AJ, Wang MY, Chen X, Maddumage R, Hunt MB, Rowan DD, Atkinson RG. The O-methyltransferase gene MdoOMT1 is required for biosynthesis of methylated phenylpropenes in ripe apple fruit. Plant J. 2015;82:937–50.
Article
CAS
PubMed
Google Scholar
Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun Y, Qian H, Tee C, van loon JJ, Dicke M, Chua NH, Liu SS, ye J. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell. 2014;26(12):4991–5008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni W, Paiva NL, Dixon RA. Reduced lignin in transgenic plants containing a caffeic acidO-methyltransferase antisense gene. Transgenic Res. 1994;3(2):120–6.
Article
CAS
Google Scholar
Guo D, Chen F, Inoue K, Blount JW, Dixon RA. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell. 2001;13(1):73–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piquemal J, Chamayou S, Nadaud I, Beckert M, Barrière Y, Mila I, Lapierre C, Rigau J, Puigdomenech P, Jauneau A. Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol. 2002;130(4):1675–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Auh C-K, Dowling P, Bell J, Lehmann D, Wang ZY. Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea). Funct Plant Biol. 2004;31(3):235–45.
Article
CAS
Google Scholar
Bonawitz ND, Im Kim J, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J, Ralph J, Donohoe BS, Ladisch M. Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature. 2014;509(7500):376–80.
Article
CAS
PubMed
Google Scholar
Shimizu A, Dohzono I, Nakaji M, Roff DA, Miller DG III, Osato S, Yajima T, Niitsu S, Utsugi N, Sugawara T. Fine-tuned bee-flower coevolutionary state hidden within multiple pollination interactions. Sci Rep. 2014;4
Barfod AS, Hagen M, Borchsenius F. Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Ann Bot. 2011;108(8):1503–16.
Article
PubMed
PubMed Central
Google Scholar
Hashim R, Saari N, Sulaiman O, Sugimoto T, Hiziroglu S, Sato M, Tanaka R. Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk. Mater Design. 2010;31(9):4251–7.
Article
CAS
Google Scholar
Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci U S A. 1998;95(12):6619–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J. 2000;22(3):223–34.
Article
CAS
PubMed
Google Scholar
Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD. Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agr Food Chem. 2003;51(21):6178–83.
Article
CAS
Google Scholar
Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci U S A. 2003;100(8):4939–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A. 2011;108(9):3803–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Rajan C, Venkatesh PN, Chua NH, Sarojam R. Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant Biotech J. 2016;14:1619–32.
Article
CAS
Google Scholar
Sangha JS, Gu K, Kaur J, Yin Z. An improved method for RNA isolation and cDNA library construction from immature seeds of Jatropha curcas L. BMC research notes. 2010;3(1):126.
Article
PubMed
PubMed Central
Google Scholar
Jin J, Panicker D, Wang Q, Kim MJ, Liu J, Yin J-L, Wong L, Jang I-C, Chua N-H, Sarojam R. Next generation sequencing unravels the biosynthetic ability of spearmint (Mentha spicata) peltate glandular trichomes through comparative transcriptomics. BMC Plant Biol. 2014;14(1):292.
Article
PubMed
PubMed Central
Google Scholar
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF, MADS-box SHATTERPROOF. genes control seed dispersal in Arabidopsis. Nature. 2000;404(6779):766–70.
Article
CAS
PubMed
Google Scholar