Gruenbaum Y, Naveh-Many T, Cedar H, Razin A. Sequence specificity of methylation in higher plant DNA. Nature. 1981;292:860–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6267477 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Gruenbaum Y, Cedar H, Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature. 1982;295:620–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7057921 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Meyer P, Niedenhof I, ten Lohuis M. Evidence for cytosine methylation of non-symmetrical sequences in transgenic Petunia hybrida. EMBO J. 1994;13:2084–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8187761 [cited 2016 Jun 19].
CAS
PubMed
PubMed Central
Google Scholar
Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci U S A. 2000;97:4979–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10781108 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartee L, Malagnac F, Bender J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev. 2001;15:1753–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11459824 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science. 2001;292:2077–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11349138 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Kishimoto N, Sakai H, Jackson J, Jacobsen SE, Meyerowitz EM, Dennis ES, et al. Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus. Plant Mol Biol. 2001;46:171–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11442057 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Papa CM, Springer NM, Muszynski MG, Meeley R, Kaeppler SM. Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell. 2001;13:1919–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11487702 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152:352–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23313553 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Eichten SR, Hermanson PJ, Zaunbrecher VM, Song J, Wendt J, et al. Genetic perturbation of the maize methylome. Plant Cell. 2014;26:4602–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25527708 [cited 2016 Jun 19].
Article
PubMed
PubMed Central
Google Scholar
Cao X, Jacobsen SE. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol. 2002;12:1138–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12121623 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Wassenegger M, Heimes S, Riedel L, Sänger HL. RNA-directed de novo methylation of genomic sequences in plants. Cell. 1994;76:567–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8313476 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15:394–408. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24805120 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell. 2006;126:1189–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16949657 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39:61–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17128275 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Wang X, Elling AA, Li X, Li N, Peng Z, He G, et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell. 2009;21:1053–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19376930 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell. 2010;22:17–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20086188 [cited 2016 Jul 4].
Article
CAS
PubMed
PubMed Central
Google Scholar
Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328:916–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20395474 [cited 2016 Jul 4].
Article
CAS
PubMed
Google Scholar
Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, et al. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics. 2012;13:300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22747568 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Song Q-X, Lu X, Li Q-T, Chen H, Hu X-Y, Ma B, et al. Genome-wide analysis of DNA methylation in soybean. Mol Plant. 2013;6:1961–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23966636 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Gardiner L-J, Quinton-Tulloch M, Olohan L, Price J, Hall N, Hall A. A genome-wide survey of DNA methylation in hexaploid wheat. Genome Biol. 2015;16:273. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26653535 [cited 2016 Jun 20].
Article
PubMed
PubMed Central
Google Scholar
Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, Gonzales M, et al. A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. Plant Physiol. 2015;168:1433–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26149573 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Xia H, Zhang Y, Zhao S, Zhao C, Hou L, et al. Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may). BMC Genomics. 2015;16:21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25612809 [cited 2016 Jun 19].
Article
PubMed
PubMed Central
Google Scholar
Chandler VL, Walbot V. DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci U S A. 1986;83:1767–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3006070 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Bestor TH. DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Philos Trans R Soc Lond B Biol Sci. 1990;326:179–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1968655 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Vaughn MW, Tanurdzić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, et al. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 2007;5:e174. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17579518 [cited 2016 Jun 19].
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Shiu S-H, Shiu S, Cal A, Borevitz JO. Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet. 2008;4:e1000032. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18369451 [cited 2016 Jun 19].
Article
PubMed
PubMed Central
Google Scholar
Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011;480:245–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22057020 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S, et al. Heritable epigenetic variation among maize inbreds. PLoS Genet. 2011;7:e1002372. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22125494 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science. 2011;334:369–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21921155 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell. 2013;25:2783–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23922207 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Regulski M, Lu Z, Kendall J, Donoghue MTA, Reinders J, Llaca V, et al. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 2013;23:1651–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23739895 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitz RJ, He Y, Valdés-López O, Khan SM, Joshi T, Urich MA, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 2013;23:1663–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23739894 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Xie S, Dong X, Zhao X, Zeng B, Chen J, et al. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res. 2014;24:167–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24131563 [cited 2016 Jul 4].
Article
CAS
PubMed
PubMed Central
Google Scholar
Widman N, Feng S, Jacobsen SE, Pellegrini M. Epigenetic differences between shoots and roots in Arabidopsis reveals tissue-specific regulation. Epigenetics. 2014;9:236–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24169618 [cited 2016 Jul 4].
Article
CAS
PubMed
Google Scholar
Hagmann J, Becker C, Müller J, Stegle O, Meyer RC, Wang G, et al. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 2015;11:e1004920. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25569172 [cited 2016 Jun 19].
Article
PubMed
PubMed Central
Google Scholar
Cervera MT, Ruiz-García L, Martínez-Zapater JM. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics. 2002;268:543–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12471452 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Zhang MS, Yan HY, Zhao N, Lin XY, Pang JS, Xu KZ, et al. Endosperm-specific hypomethylation, and meiotic inheritance and variation of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) inter-strain hybrids. Theor Appl Genet. 2007;115:195–207. Available from: http://link.springer.com/10.1007/s00122-007-0555-8 [cited 2016 Jun 20].
Article
CAS
PubMed
Google Scholar
Zhao X, Chai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci. 2007;172:930–8.
Article
CAS
Google Scholar
Wang H, Chai Y, Chu X, Zhao Y, Wu Y, Zhao J, et al. Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability. BMC Plant Biol. 2009;9:63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19476655 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185:1108–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20003072 [cited 2016 Jun 20].
Article
CAS
PubMed
Google Scholar
Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A, et al. Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell. 2004;16:510–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science. 2009;324:1447–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19520961 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh T-F, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, et al. Genome-wide demethylation of Arabidopsis endosperm. Science. 2009;324:1451–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19520962 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, et al. Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A. 2010;107:18729–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20937895 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Dai M, Li F, Liu A. Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean. Nucleic Acids Res. 2014;42:6987–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24799438 [cited 2016 Jul 4].
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing M-Q, Zhang Y-J, Zhou S-R, Hu W-Y, Wu X-T, Ye Y-J, et al. Global analysis reveals the crucial roles of DNA methylation during rice seed development. Plant Physiol. 2015;168:1417–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26145151 [cited 2016 Jun 20].
Article
CAS
PubMed
PubMed Central
Google Scholar
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7501463 [cited 2016 Jul 5].
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyna-López GE, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet. 1997;253:703–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9079881 [cited 2016 Jun 19].
Article
PubMed
Google Scholar
Schmitt F, Oakeley EJ, Jost JP. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem. 1997;272:1534–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8999825 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Warnecke PM, Stirzaker C, Melki JR, Millar DS, Paul CL, Clark SJ. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 1997;25:4422–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9336479 [cited 2017 Jan 11].
Article
CAS
PubMed
PubMed Central
Google Scholar
Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, et al. Genome-wide atlas of transcription during maize development. Plant J. 2011;66:553–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21299659 [cited 2016 Jul 14].
Article
CAS
PubMed
Google Scholar
Oey H, Isbel L, Hickey P, Ebaid B, Whitelaw E. Genetic and epigenetic variation among inbred mouse littermates: identification of inter-individual differentially methylated regions. Epigenetics and chromatin. 2015;8:54.
Article
PubMed
PubMed Central
Google Scholar
Qu W, Tsukahara T, Nakamura R, Yurino H, Hashimoto S, Tsuji S, et al. Assessing cell-to-cell DNA methylation variability on individual long reads. Sci Rep. 2016;6:21317. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26888466 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Saze H, Shiraishi A, Miura A, Kakutani T. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science. 2008;319:462–5. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1150987 [cited 2017 Jan 12].
Article
CAS
PubMed
Google Scholar
Miura A, Nakamura M, Inagaki S, Kobayashi A, Saze H, Kakutani T. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J. 2009;28:1078–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19262562 [cited 2017 Jan 11].
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaari R, Noy-Malka C, Wiedemann G, Auerbach Gershovitz N, Reski R, Katz A, et al. DNA METHYLTRANSFERASE 1 is involved in mCG and mCCG DNA methylation and is essential for sporophyte development in Physcomitrella patens. Plant Mol Biol. 2015;88:387–400. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25944663 [cited 2017 Jan 11].
Article
CAS
PubMed
Google Scholar
Bewick AJ, Ji L, Niederhuth CE, Willing E-M, Hofmeister BT, Shi X, et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci. 2016;113:9111–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27457936 [cited 2017 Jan 11].
Article
CAS
PubMed
PubMed Central
Google Scholar
Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133:523–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18423832 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauria M, Piccinini S, Pirona R, Lund G, Viotti A, Motto M. Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays). Genetics Genetics. 2014;196:653–66.
Article
CAS
PubMed
Google Scholar
Eichten SR, Springer NM. Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress. Front Plant Sci. 2015;6:308. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25999972 [cited 2016 Jun 19].
Article
PubMed
PubMed Central
Google Scholar
Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, et al. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife. 2015;4:e09343. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26196146 [cited 2016 Jun 19].
Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife. 2016;5:e13546. Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.13546 [cited 2016 Jul 4].
Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10545949 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Reiss D, Zhang Y, Rouhi A, Reuter M, Mager DL. Variable DNA methylation of transposable elements: the case study of mouse Early Transposons. Epigenetics. 2010;5:68–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20083901 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Rangwala SH, Elumalai R, Vanier C, Ozkan H, Galbraith DW, Richards EJ. Meiotically stable natural epialleles of sadhu, a novel arabidopsis retroposon. PLoS Genet. 2006;2:e36. Available from: http://dx.plos.org/10.1371/journal.pgen.0020036 [cited 2016 Jun 19].
Article
PubMed
PubMed Central
Google Scholar
Sandovici I, Kassovska-Bratinova S, Loredo-Osti JC, Leppert M, Suarez A, Stewart R, et al. Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Hum Mol Genet. 2005;14:2135–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15972727 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Luff B, Pawlowski L, Bender J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol Cell. 1999;3:505–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10230403 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Melquist S, Luff B, Bender J. Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics. 1999;153:401–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10471722 [cited 2016 Jun 19].
CAS
PubMed
PubMed Central
Google Scholar
Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, et al. A transposon-induced epigenetic change leads to sex determination in melon. Nature. 2009;461:1135–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19847267 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Hollister JD, Smith LM, Guo Y-L, Ott F, Weigel D, Gaut BS. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci U S A. 2011;108:2322–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21252301 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Durand S, Bouché N, Perez Strand E, Loudet O, Camilleri C. Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr Biol. 2012;22:326–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22285031 [cited 2016 Jun 19].
Article
CAS
PubMed
Google Scholar
Eichten SR, Ellis NA, Makarevitch I, Yeh C-T, Gent JI, Guo L, et al. Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet. 2012;8:e1003127. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23271981 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Liu Y, Xia E-H, Yao Q-Y, Liu X-D, Gao L-Z. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci U S A. 2015;112:E7022–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26621743 [cited 2016 Jun 19].
Article
CAS
PubMed
PubMed Central
Google Scholar
Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 1991;9:208–18. Available from: http://link.springer.com/10.1007/BF02672069 [cited 2016 Jun 19].
Article
CAS
Google Scholar