Darwin C, Darwin F. The power of movement in plants. London: John Murray; 1880.
Book
Google Scholar
Larsen P. Gravity sensing by plants. Life Sci Space Res. 1973;11:141–54.
CAS
PubMed
Google Scholar
Arnaud C, Bonnot C, Desnos T, Nussaume L. The root cap at the forefront. C R Biol. 2010;333(4):335–43.
Article
CAS
PubMed
Google Scholar
Cassab GI, Eapen D, Campos ME. Root hydrotropism: an update. Am J Bot. 2013;100(1):14–24.
Article
CAS
PubMed
Google Scholar
Eshel A, Beeckman T, editors. Plant roots: The hidden half. 4th ed. Boca Raton: CRC Press; 2013.
Google Scholar
Lopez D, Tocquard K, Venisse JS, Legue V, Roeckel-Drevet P. Gravity sensing, a largely misunderstood trigger of plant orientated growth. Front Plant Sci. 2014;5:610.
Article
PubMed
PubMed Central
Google Scholar
Oliva M, Dunand C. Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis. New Phytol. 2007;176(1):37–43.
Article
CAS
PubMed
Google Scholar
Roy R, Bassham DC. Root growth movements: waving and skewing. Plant Sci. 2014;221–222:42–7.
Article
PubMed
CAS
Google Scholar
Migliaccio F, Fortunati A, Tassone P. Arabidopsis root growth movements and their symmetry: progress and problems arising from recent work. Plant Signal Behav. 2009;4(3):183–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buer CS, Wasteneys GO, Masle J. Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol. 2003;132(2):1085–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey S, Monshausen GB, Ding L, Assmann SM. Regulation of root-wave response by extra large and conventional G proteins in Arabidopsis thaliana. Plant J. 2008;55(2):311–22.
Article
CAS
PubMed
Google Scholar
Vaughn LM, Masson PH. A QTL study for regions contributing to Arabidopsis thaliana root skewing on tilted surfaces. G3 (Bethesda). 2011;1(2):105–15.
Article
Google Scholar
Yuen CY, Sedbrook JC, Perrin RM, Carroll KL, Masson PH. Loss-of-function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. Plant Physiol. 2005;138(2):701–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okada K, Shimura Y. Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science. 1990;250(4978):274–6.
Article
CAS
PubMed
Google Scholar
Thompson MV, Holbrook NM. Root-gel interactions and the root waving behavior of Arabidopsis. Plant Physiol. 2004;135(3):1822–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Millar KD, Johnson CM, Edelmann RE, Kiss JZ. An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Astrobiology. 2011;11(8):787–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul AL, Amalfitano CE, Ferl RJ. Plant growth strategies are remodeled by spaceflight. BMC Plant Biol. 2012;12:232.
Article
PubMed
PubMed Central
Google Scholar
Nakashima J, Liao F, Sparks JA, Tang Y, Blancaflor EB. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. Plant Biol (Stuttg). 2014;16(1):142–50.
Article
Google Scholar
Bidzinski P, Noir S, Shahi S, Reinstadler A, Gratkowska DM, Panstruga R. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes. Plant Cell Environ. 2014;37(12):2738–53.
Article
CAS
PubMed
Google Scholar
Kushwah S, Jones AM, Laxmi A. Cytokinin-induced root growth involves actin filament reorganization. Plant Signal Behav. 2011;6(11):1848–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kushwah S, Jones AM, Laxmi A. Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth. Plant Physiol. 2011;156(4):1851–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sedbrook J, Boonsirichai K, Chen R, Hilson P, Pearlman R, Rosen E, Rutherford R, Batiza A, Carroll K, Schulz T, et al. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana. Gravit Space Biol Bull. 1998;11(2):71–8.
CAS
PubMed
Google Scholar
Antosiewicz DM, Polisensky DH, Braam J. Cellular localization of the Ca2+ binding TCH3 protein of Arabidopsis. Plant J. 1995;8(5):623–36.
Article
CAS
PubMed
Google Scholar
Weerasinghe RR, Swanson SJ, Okada SF, Garrett MB, Kim SY, Stacey G, Boucher RC, Gilroy S, Jones AM. Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett. 2009;583(15):2521–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monshausen GB, Haswell ES. A force of nature: molecular mechanisms of mechanoperception in plants. J Exp Bot. 2013;64(15):4663–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iida H, Furuichi T, Nakano M, Toyota M, Sokabe M, Tatsumi H. New candidates for mechano-sensitive channels potentially involved in gravity sensing in Arabidopsis thaliana. Plant Biol (Stuttg). 2014;16(1):39–42.
Article
Google Scholar
Nakano M, Samejima R, Iida H. Mechanosensitive channel candidate MCA2 is involved in touch-induced root responses in Arabidopsis. Front Plant Sci. 2014;5:421.
PubMed
PubMed Central
Google Scholar
Swanson SJ, Barker R, Ye Y, Gilroy S. Evaluating mechano-transduction and touch responses in plant roots. Methods Mol Biol. 2015;1309:143–50.
Article
PubMed
Google Scholar
Digby J, Firn RD. The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ. 1995;18(12):1434–40.
Article
CAS
PubMed
Google Scholar
Roychoudhry S, Del Bianco M, Kieffer M, Kepinski S. Auxin controls gravitropic setpoint angle in higher plant lateral branches. Curr Biol. 2013;23(15):1497–504.
Article
CAS
PubMed
Google Scholar
Roychoudhry S, Kepinski S. Analysis of gravitropic setpoint angle control in Arabidopsis. Methods Mol Biol. 2015;1309:31–41.
Article
PubMed
Google Scholar
Rosquete MR, von Wangenheim D, Marhavy P, Barbez E, Stelzer EH, Benkova E, Maizel A, Kleine-Vehn J. An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr Biol. 2013;23(9):817–22.
Article
CAS
PubMed
Google Scholar
Digby J, Firn RD. Light modulation of the gravitropic set-point angle (GSA). J Exp Bot. 2002;53(367):377–81.
Article
CAS
PubMed
Google Scholar
Wan YL, Eisinger W, Ehrhardt D, Kubitscheck U, Baluska F, Briggs W. The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant. 2008;1(1):103–17.
Article
CAS
PubMed
Google Scholar
Kiss JZ, Millar KD, Edelmann RE. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta. 2012;236(2):635–45.
Article
CAS
PubMed
Google Scholar
Kutschera U, Briggs WR. Root phototropism: from dogma to the mechanism of blue light perception. Planta. 2012;235(3):443–52.
Article
CAS
PubMed
Google Scholar
Zhang KX, Xu HH, Yuan TT, Zhang L, Lu YT. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. Plant J. 2013;76(2):308–21.
CAS
PubMed
Google Scholar
Moriwaki T, Miyazawa Y, Fujii N, Takahashi H. GNOM regulates root hydrotropism and phototropism independently of PIN-mediated auxin transport. Plant Sci. 2014;215–216:141–9.
Article
PubMed
CAS
Google Scholar
Yokawa K, Fasano R, Kagenishi T, Baluska F. Light as stress factor to plant roots - case of root halotropism. Front Plant Sci. 2014;5:718.
Article
PubMed
PubMed Central
Google Scholar
Haga K, Tsuchida-Mayama T, Yamada M, Sakai T. Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses. Plant Cell. 2015;27(4):1098–112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato EM, Hijazi H, Bennett MJ, Vissenberg K, Swarup R. New insights into root gravitropic signalling. J Exp Bot. 2015;66(8):2155–65.
Article
CAS
PubMed
Google Scholar
Silva-Navas J, Moreno-Risueno MA, Manzano C, Pallero-Baena M, Navarro-Neila S, Tellez-Robledo B, Garcia-Mina JM, Baigorri R, Javier Gallego F, Del Pozo JC. D-Root: a system to cultivate plants with the root in darkness or under different light conditions. Plant J. 2015;84(1):244–55.
Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C. Halotropism is a response of plant roots to avoid a saline environment. Curr Biol. 2013;23(20):2044–50.
Article
CAS
PubMed
Google Scholar
Pierik R, Testerink C. The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol. 2014;166(1):5–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chae K, Lord EM. Pollen tube growth and guidance: roles of small, secreted proteins. Ann Bot. 2011;108(4):627–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI. Hydrotropism: root growth responses to water. Trends Plant Sci. 2005;10(1):44–50.
Article
CAS
PubMed
Google Scholar
Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y. Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol. 2010;51(4):524–36.
Article
CAS
PubMed
Google Scholar
Rutherford R, Gallois P, Masson PH. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces. Plant J. 1998;16(2):145–54.
Article
CAS
PubMed
Google Scholar
Rutherford R, Masson PH. Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector. Plant Physiol. 1996;111(4):987–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible WR, Somerville CR. The Arabidopsis SKU6/SPIRAL1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell. 2004;16(6):1506–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuen CY, Pearlman RS, Silo-Suh L, Hilson P, Carroll KL, Masson PH. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol. 2003;131(2):493–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobe M, Muller R, Grunewald M, Brand U, Simon R. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol. 2003;213(8):371–81.
Article
CAS
PubMed
Google Scholar
Deruere J, Jackson K, Garbers C, Soll D, Delong A. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J. 1999;20(4):389–99.
Article
CAS
PubMed
Google Scholar
Santner AA, Watson JC. The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J. 2006;45(5):752–64.
Article
CAS
PubMed
Google Scholar
Qi B, Zheng H. Modulation of root-skewing responses by KNAT1 in Arabidopsis thaliana. Plant J. 2013;76(3):380–92.
Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR. The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell. 2002;14(7):1635–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang X, Wang B, Farris B, Clark G, and Roux SJ. Modulation of Root Skewing in Arabidopsis by Apyrases and Extracellular ATP. Plant Cell Physiol. 2015;56:2197-206.
Grabov A, Ashley MK, Rigas S, Hatzopoulos P, Dolan L, Vicente-Agullo F. Morphometric analysis of root shape. New Phytol. 2005;165(2):641–51.
Article
CAS
PubMed
Google Scholar
Maris A, Suslov D, Fry SC, Verbelen JP, Vissenberg K. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J Exp Bot. 2009;60(13):3959–72.
Article
CAS
PubMed
Google Scholar
Wu X, Shi Y, Li J, Xu L, Fang Y, Li X, Qi Y. A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res. 2013;23(5):645–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogura Y, Komatsu A, Zikihara K, Nanjo T, Tokutomi S, Wada M, Kiyosue T. Blue light diminishes interaction of PAS/LOV proteins, putative blue light receptors in Arabidopsis thaliana, with their interacting partners. J Plant Res. 2008;121(1):97–105.
Article
CAS
PubMed
Google Scholar
Cederholm HM, Benfey PN. Distinct sensitivities to phosphate deprivation suggest that RGF peptides play disparate roles in Arabidopsis thaliana root development. New Phytol. 2015;207(3):683–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 2005;138(4):2337–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamins R, Ampudia CS, Hooykaas PJ, Offringa R. PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol. 2003;132(3):1623–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivanova A, Law SR, Narsai R, Duncan O, Lee JH, Zhang B, Van Aken O, Radomiljac JD, van der Merwe M, Yi K, et al. A functional antagonistic relationship between auxin and mitochondrial retrograde signaling regulates alternative Oxidase1a expression in Arabidopsis. Plant Physiol. 2014;165(3):1233–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012;40(Database issue):D1202–1210.
Article
CAS
PubMed
Google Scholar
Hooper CM, Tanz SK, Castleden IR, Vacher MA, Small ID, Millar AH. SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics. 2014;30(23):3356–64.
Article
CAS
PubMed
Google Scholar
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One. 2007;2(8):e718.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bargmann BO, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann DC, Estelle M, et al. A map of cell type-specific auxin responses. Mol Syst Biol. 2013;9:688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007;318(5851):801–6.
Article
CAS
PubMed
Google Scholar
Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A. Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant. 2013;49(6):643–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alford SR, Rangarajan P, Williams P, Gillaspy GE. myo-inositol oxygenase is required for responses to Low energy conditions in Arabidopsis thaliana. Front Plant Sci. 2012;3:69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Endres S, Tenhaken R. Down-regulation of the myo-inositol oxygenase gene family has no effect on cell wall composition in Arabidopsis. Planta. 2011;234(1):157–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin WD, Liao YY, Yang TJ, Pan CY, Buckhout TJ, Schmidt W. Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol. 2011;155(3):1383–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Calvino L, Guzman-Benito I, Del Toro FJ, Donaire L, Castro-Sanz AB, Ruiz-Ferrer V, Llave C. Activation of senescence-associated dark-inducible (DIN) genes during infection contributes to enhanced susceptibility to plant viruses. Mol Plant Pathol. 2016;17(1):3–15.
Article
CAS
PubMed
Google Scholar
Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ. A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell. 2009;21(1):318–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004;136(1):2621–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science. 2008;320(5878):942–5.
Article
CAS
PubMed
Google Scholar
Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN. Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell. 2011;21(4):770–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze WX, Paz-Ares J, et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants. 2015;1(4):15025.
Article
CAS
PubMed
Google Scholar
Renault H, El Amrani A, Berger A, Mouille G, Soubigou-Taconnat L, Bouchereau A, Deleu C. gamma-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ. 2013;36(5):1009–18.
Article
CAS
PubMed
Google Scholar
Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ. The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiol Biochem. 2005;43(10-11):997–1005.
Article
CAS
PubMed
Google Scholar
Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 2003;132(3):1260–71.
Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiol. 2016;170(3):1460–79.
CAS
PubMed
PubMed Central
Google Scholar
Hill CB, Jha D, Bacic A, Tester M, Roessner U. Characterization of ion contents and metabolic responses to salt stress of different Arabidopsis AtHKT1;1 genotypes and their parental strains. Mol Plant. 2013;6(2):350–68.
Article
CAS
PubMed
Google Scholar
Brenner WG, Schmulling T. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC Plant Biol. 2012;12:112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shkolnik-Inbar D, Adler G, Bar-Zvi D. ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. Plant J. 2013;73(6):993–1005.
Article
CAS
PubMed
Google Scholar
Reimand J, Arak T, Vilo J. g:Profiler--a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 2011;39(Web Server issue):W307–315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35(Web Server issue):W193–200.
Article
PubMed
PubMed Central
Google Scholar
Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335(6065):207–11.
Article
CAS
PubMed
Google Scholar
Duan Z, Homma A, Kobayashi M, Nagata N, Kaneko Y, Fujiki Y, Nishida I. Photoassimilation, assimilate translocation and plasmodesmal biogenesis in the source leaves of Arabidopsis thaliana grown under an increased atmospheric CO2 concentration. Plant Cell Physiol. 2014;55(2):358–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant. 2013;6(3):665–74.
Article
CAS
PubMed
Google Scholar
Badri DV, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32(6):666–81.
Article
CAS
PubMed
Google Scholar
Fujiki Y, Yoshikawa Y, Sato T, Inada N, Ito M, Nishida I, Watanabe A. Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plant. 2001;111(3):345–52.
Article
CAS
PubMed
Google Scholar
Fujiki Y, Ito M, Nishida I, Watanabe A. Multiple signaling pathways in gene expression during sugar starvation. Pharmacological analysis of DIN gene expression in suspension-cultured cells of Arabidopsis. Plant Physiol. 2000;124(3):1139–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Sagasti MT, Barrutia O, Ribas G, Garbisu C, Becerril JM. Early transcriptomic response of Arabidopsis thaliana to polymetallic contamination: implications for the identification of potential biomarkers of metal exposure. Metallomics. 2016;8(5):518–31.
Fujiki Y, Nakagawa Y, Furumoto T, Yoshida S, Biswal B, Ito M, Watanabe A, Nishida I. Response to darkness of late-responsive dark-inducible genes is positively regulated by leaf age and negatively regulated by calmodulin-antagonist-sensitive signalling in Arabidopsis thaliana. Plant Cell Physiol. 2005;46(10):1741–6.
Article
CAS
PubMed
Google Scholar
Zhu H, Qian W, Lu X, Li D, Liu X, Liu K, Wang D. Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol. 2005;59(4):581–94.
Article
CAS
PubMed
Google Scholar
Salinas-Mondragon RE, Kajla JD, Perera IY, Brown CS, Sederoff HW. Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression. Plant Cell Environ. 2010;33(12):2041–55.
Article
CAS
PubMed
Google Scholar
Yu C, Hou XL, Wu P. [The effects of phosphorus, glucose and cytokinin on SEN1 gene expression in Arabidopsis]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2005;31(1):85–9.
CAS
PubMed
Google Scholar
Xue S, Yao X, Luo W, Jha D, Tester M, Horie T, Schroeder JI. AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS One. 2011;6(9):e24725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 2004;136(1):2500–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A. 2001;98(24):14150–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brinker M, Brosche M, Vinocur B, Abo-Ogiala A, Fayyaz P, Janz D, Ottow EA, Cullmann AD, Saborowski J, Kangasjarvi J, et al. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation. Plant Physiol. 2010;154(4):1697–709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.
Article
CAS
PubMed
Google Scholar
Li H, Shen T, Smith MB, Fujiwara I, Vavylonis D, Huang X. Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models. Proc IEEE Int Symp Biomed Imaging. 2009;2009:1302–5.
PubMed
PubMed Central
Google Scholar
Smith MB, Li H, Shen T, Huang X, Yusuf E, Vavylonis D. Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton (Hoboken). 2010;67(11):693–705.
Article
Google Scholar
RootMeasurement [https://github.com/eschultzphd/RootMeasurement]. Accessed 20 Apr 2016.
Langsrud O. ANOVA for unbalanced data: use type II instead of type III sums of squares. Stat Comput. 2003;13(2):163–7.
Article
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38(Web Server issue):W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obayashi T, Okamura Y, Ito S, Tadaka S, Aoki Y, Shirota M, Kinoshita K. ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol. 2014;55(1):e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O’Donnell L, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2015;43(Database issue):D470–478.
Article
PubMed
Google Scholar
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 2006;34(Database issue):D535–539.
Article
CAS
PubMed
Google Scholar
Consortium TU. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–212.
Article
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(Database issue):D199–205.
Article
CAS
PubMed
Google Scholar
Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, et al. STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37(Database issue):D412–416.
Article
CAS
PubMed
Google Scholar
Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(Web Server issue):W214–220.
Article
CAS
PubMed
PubMed Central
Google Scholar