Chen X, Yang L, Zhang N, Turpin JA, Buckheit RW, Osterling C, et al. Shikonin, a component of Chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2003;47:2810–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Qian R-Q, Li P-P. Shikonin, an ingredient of Lithospermum erythrorhizon, down-regulates the expression of steroid sulfatase genes in breast cancer cells. Cancer Lett. 2009;284:47–54.
Article
CAS
PubMed
Google Scholar
Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297–306.
Article
CAS
PubMed
Google Scholar
Wang Z, Liu T, Gan L, Wang T, Yuan X, Zhang B, et al. Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Europ J Pharmacol. 2010;643:211–7.
Article
CAS
Google Scholar
Papageorgiou V. Naturally occurring isohexenylnaphthazarin pigments: a new class of drugs. Planta Med. 1980;38:193–203.
Article
CAS
PubMed
Google Scholar
Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nicolaou K. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew Chem Int Ed. 1999;38:270–301.
Article
Google Scholar
Shimomura K, Sudo H, Saga H, Kamada H. Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Rep. 1991;10:282–5.
Article
CAS
PubMed
Google Scholar
Yazaki K, Matsuoka H, Ujihara T, SATO F. Shikonin biosynthesis in Lithospermum erythrorhizon:Light-induced negative regulation of secondary metabolism. Plant Biotechnol. 1999;16:335–42.
Article
CAS
Google Scholar
Touno K, Harada K, Yoshimatsu K, Yazaki K, Shimomura K. Shikonin derivative formation on the stem of cultured shoots in Lithospermum erythrorhizon. Plant Cell Rep. 2000;19:1121–6.
Article
CAS
Google Scholar
Yazaki K, Kataoka M, Honda G, Severin K, Heide L. cDNA cloning and gene expression of phenylalanine ammonia-lyase in Lithospermum erythrorhizon. Biosci Biotechnol Biochem. 1997;61:1995–2003.
Article
CAS
PubMed
Google Scholar
Yamamura Y, Ogihara Y, Mizukami H. Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep. 2001;20:655–62.
Article
CAS
Google Scholar
Lange BM, Severin K, Bechthold A, Heide L. Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase for shikonin biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Planta. 1998;204:234–41.
Article
CAS
PubMed
Google Scholar
Yazaki K, Kunihisa M, Fujisaki T, Sato F. Geranyl Diphosphate: 4-Hydroxybenzoate Geranyltransferase from Lithospermum erythrorhizon CLONING AND CHARACTERIZATION OF A KEY ENZYME IN SHIKONIN BIOSYNTHESIS. J Biol Chem. 2002;277:6240–6.
Article
CAS
PubMed
Google Scholar
Ohara K, Muroya A, Fukushima N, Yazaki K. Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid. Biochem J. 2009;421:231–41.
Article
CAS
PubMed
Google Scholar
Ohara K, Mito K, Yazaki K. Homogeneous purification and characterization of LePGT1- a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon. FEBS J. 2013;280:2572–80.
Article
CAS
PubMed
Google Scholar
Yamamura Y, Sahin FP, Nagatsu A, Mizukami H. Molecular cloning and characterization of a cDNA encoding a novel apoplastic protein preferentially expressed in a shikonin-producing callus strain of Lithospermum erythrorhizon. Plant Cell Physiol. 2003;44:437–46.
Article
CAS
PubMed
Google Scholar
Yazaki K, Matsuoka H, Sato F. cDNA cloning and functional analysis of LEDI-2, a gene preferentially expressed in the dark in Lithospermum cell suspension cultures. Plant Physiol. 1997;114:1348.
Google Scholar
Touno K, Harada K, Yoshimatsu K, Yazaki K, Shimomura K. Histological observation of red pigment formed on shoot stem of Lithospermum erythrorhizon. Plant Biotech. 2000;17:127–30.
Article
CAS
Google Scholar
Liu Z, Qi J-L, Chen L, Zhang M-S, Wang X-Q, Pang Y-J, et al. Effect of light on gene expression and shikonin formation in cultured Onosma paniculatum cells. Plant Cell Tiss Org Cult. 2006;84:38–48.
Article
CAS
Google Scholar
Zhang W-J, Su J, Tan M-Y, Liu G-L, Pang Y-J, Shen H-G, et al. Expression analysis of shikonin-biosynthetic genes in response to M9 medium and light in Lithospermum erythrorhizon cell cultures. Plant Cell Tiss Organ Cult. 2010;101:135–42.
Article
CAS
Google Scholar
Fujita Y, Hara Y, Suga C, Morimoto T. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. Plant Cell Rep. 1981;1:61–3.
Article
CAS
PubMed
Google Scholar
Liu Z, Li Y, Yang T, Su J, Zhang M, Tian R, et al. Shikonin accumulation is related to calcium homeostasis in Onosma paniculata cell cultures. Phyton-Ann Rei Bot. 2011;51:103–13.
Google Scholar
Brigham LA, Michaels PJ, Flores HE. Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol. 1999;119:417–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu S-J, Qi J-L, Zhang W-J, Liu S-H, Xiao F-H, Zhang M-S, et al. Nitric oxide regulates shikonin formation in suspension-cultured Onosma paniculatum cells. Plant Cell Physiol. 2009;50:118–28.
Article
CAS
PubMed
Google Scholar
Yazaki K, Takeda K, Tabata M. Effects of methyl jasmonate on shikonin and dihydroechinofuran production in Lithospermum cell cultures. Plant Cell Physiol. 1997;38:776–82.
Article
CAS
Google Scholar
Touno K, Tamaoka J, Ohashi Y, Shimomura K. Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon. Plant Physiol Biochem. 2005;43:101–5.
Article
CAS
PubMed
Google Scholar
Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell. 2003;115:679–89.
Article
CAS
PubMed
Google Scholar
Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, et al. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell. 2009;21:2527–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng J, Li Z, Wen X, Li W, Shi H, Yang L, et al. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet. 2014;10, e1004664.
Article
PubMed
PubMed Central
Google Scholar
Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A. 2011;108:12539–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, et al. Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci U S A. 2010;107:14502–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell. 2012;24:2578–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang J, Clay JM, Chang C. Association of cytochrome b
5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. Plant J. 2014;77:558–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi JL, Zhang WJ, Liu SH, Wang H, Sun DY, Xu GH, et al. Expression analysis of light-regulated genes isolated from a full-length-enriched cDNA library of Onosma paniculatum cell cultures. J Plant Physiol. 2008;165:1474–82.
Article
CAS
PubMed
Google Scholar
Zou A, Zhang W, Pan Q, Zhu S, Yin J, Tian R, et al. Cloning, characterization, and expression of LeEIL-1, an Arabidopsis EIN3 homolog, in Lithospermum erythrorhizon. Plant Cell Tiss Org Cult. 2011;106:71–9.
Article
CAS
Google Scholar
Zhao H, Chang Q, Zhang D, Fang R, Wu F, Wang X, et al. Overexpression of LeMYB1 enhances shikonin formation by up-regulating key shikonin biosynthesis-related genes in Lithospermum erythrorhizon. Biol Plant. 2015;59:429–35.
Article
CAS
Google Scholar
Batra J, Dutta A, Singh D, Kumar S, Sen J. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left-and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep. 2004;23:148–54.
Article
CAS
PubMed
Google Scholar
Grąbkowska R, Królicka A, Mielicki W, Wielanek M, Wysokińska H. Genetic transformation of Harpagophytum procumbens by Agrobacterium rhizogenes: iridoid and phenylethanoid glycoside accumulation in hairy root cultures. Acta Physiol Plant. 2010;32:665–73.
Article
Google Scholar
An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell. 2010;22:2384–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Zou A, Miao J, Yin Y, Tian R, Pang Y, et al. LeERF-1, a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in Lithospermum erythrorhizon. Plant Biol. 2011;13:343–8.
Article
PubMed
Google Scholar
Li Z, Peng J, Wen X, Guo H. Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell. 2013;25:3311–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo H, Ecker JR. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell. 2003;115:667–77.
Article
CAS
PubMed
Google Scholar
Solano R, Stepanova A, Chao Q, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 1998;12:3703–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell. 2000;12:393–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazaki K, Ogawa A, Tabata M. Isolation and characterization of two cDNAs encoding 4-coumarate:CoA ligase in Lithospermum cell cultures. Plant Cell Physiol. 1995;36:1319–29.
CAS
PubMed
Google Scholar
Fujisaki T, Ohara K, Yazaki K. Characterization of an aromatic substrate prenyltransferase, LePGT-1, involved in secondary metabolism. Wood Res. 2003;90:1–2.
CAS
Google Scholar
Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89:1133–44.
Article
CAS
PubMed
Google Scholar
Yanagisawa S, Yoo S-D, Sheen J. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature. 2003;425:521–5.
Article
CAS
PubMed
Google Scholar
Ji Y, Guo H. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant. 2013;6:11–4.
Article
CAS
PubMed
Google Scholar
Miyata K, Kawaguchi M, Nakagawa T. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus. Plant Cell Physiol. 2013;54:1469–77.
Article
CAS
PubMed
Google Scholar
Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q, et al. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci U S A. 2009;106:21431–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang R, Wu F, Zou A, Zhu Y, Zhao H, Zhao H, et al. Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. Plant Mol Biol. 2016;90:345–58.
Article
CAS
PubMed
Google Scholar
Manamohan M, Chandra GS, Asokan R, Deepa H, Prakash M, Kumar NK. One-step DNA fragment assembly for expressing intron-containing hairpin RNA in plants for gene silencing. Anal Biochem. 2013;433:189–91.
Article
CAS
PubMed
Google Scholar
Rastogi S, Kumar R, Chanotiya CS, Shanker K, Gupta MM, Nagegowda DA, et al. 4-Coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant Cell Physiol. 2013;54:1238–52.
Article
CAS
PubMed
Google Scholar
Gan D, Zhang J, Jiang H, Jiang T, Zhu S, Cheng B. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep. 2010;29:1261–8.
Article
CAS
PubMed
Google Scholar
Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, et al. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol. 2014;55:119–35.
Article
CAS
PubMed
Google Scholar
Höfgen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988;16:9877.
Article
PubMed
PubMed Central
Google Scholar
Bowra S, Vincze E. Transformation of rhizobia with broad-host-range plasmids by using a freeze-thaw method. Appl Environ Microb. 2006;72:2290–3.
Article
Google Scholar
Sommer S, Köhle A, Yazaki K, Shimomura K, Bechthold A, Heide L. Genetic engineering of shikonin biosynthesis hairy root cultures of Lithospermum erythrorhizon transformed with the bacterial ubiC gene. Plant Mol Biol. 1999;39:683–93.
Article
CAS
PubMed
Google Scholar
Yu P, Yuan J, Deng X, Ma M, Zhang H. Subcellular targeting of bacterial CusF enhances Cu accumulation and alters root to shoot Cu translocation in Arabidopsis. Plant Cell Physiol. 2014;55:1568–81.
Article
CAS
PubMed
Google Scholar