Abeles FB, Morgan PW, Saltveit ME. Ethylene in plant biology. 2nd ed. San Diego: Academic; 1992.
Google Scholar
Bleecker AB, Estelle MA, Somerville C, Kende H. Insensitivity to ethylene conferred by dominant mutation in Arabidopsis thaliana. Science. 1988;241:1–25.
Article
Google Scholar
Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science. 1999;283(5404):996–8.
Article
CAS
PubMed
Google Scholar
Gamble RL, Coonfield ML, Schaller GE. Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci U S A. 1998;95(13):7825–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moussatche P, Klee HJ. Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem. 2004;279(47):48734–41.
Article
CAS
PubMed
Google Scholar
Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 1998;10(8):1321–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark KL, Larsen PB, Wang X, Chang C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A. 1998;95(9):5401–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases. Cell. 1993;72(3):427–41.
Article
CAS
PubMed
Google Scholar
Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999;284(5423):2148–52.
Article
CAS
PubMed
Google Scholar
Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci. 2012;109(47):19486–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 2012;22(11):1613–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao H, Shen Z, Huang SC, Schmitz RJ, Urich MA, Briggs SP, et al. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science. 2012;338(6105):390–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89(7):1133–44.
Article
CAS
PubMed
Google Scholar
Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife. 2013;2, e00675.
Article
PubMed
PubMed Central
Google Scholar
Li Z, Peng J, Wen X, Guo H. Ethylene-insensitive3 is a senescence-associated gene that accelerates Age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell. 2013;25(9):3311–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrante A, Trivellini A, Scuderi D, Romano D, Vernieri P. Post-production physiology and handling of ornamental potted plants. Postharvest Biol Tec. 2015;100:99–108.
Article
CAS
Google Scholar
Rogers HJ. From models to ornamentals: how is flower senescence regulated? Plant Mol Biol. 2013;82(6):563–574.
Article
CAS
PubMed
Google Scholar
Serek M, Woltering EJ, Sisler EC, Frello S, Sriskandarajah S. Controlling ethylene responses in flowers at the receptor level. Biotechnol Adv. 2006;24(4):368–81.
Article
CAS
PubMed
Google Scholar
Sun Y, Christensen B, Liu F, Wang H, Müller R. Effects of ethylene and 1-MCP (1-methylcyclopropene) on bud and flower drop in mini Phalaenopsis cultivars. Plant Growth Regul. 2009;59(1):83–91.
Article
CAS
Google Scholar
Woltering EJ. Effects of ethylene on ornamental pot plants: a classification. Sci Hort. 1987;31(3–4):283–94.
Article
Google Scholar
Müller R, Andersen AS, Serek M. Differences in display life of miniature potted roses (Rosa hybrida L.). Sci Hort. 1998;76(1–2):59–71.
Article
Google Scholar
Finlayson SA, Reid DM. Influence of CO2 on ACC oxidase activity from roots of sunflower (Helianthus annuus) seedlings. Phytochemistry. 1994;35(4):847–51.
Article
CAS
Google Scholar
Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol. 2000;124(3):1437–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lütken H, Clarke J, Müller R. Genetic engineering and sustainable production of ornamentals: current status and future directions. Plant Cell Rep. 2012;31(7):1141–57.
Article
PubMed
Google Scholar
Chang C, Kwok S, Bleecker A, Meyerowitz E. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993;262(5133):539–44.
Article
CAS
PubMed
Google Scholar
Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, et al. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotech. 1997;15(5):444–7.
Article
CAS
Google Scholar
Clevenger DJ, Barrett JE, Klee HJ, Clark DG. Factors affecting seed production in transgenic ethylene-insensitive petunias. J Amer Soc Hort Sci. 2004;129(3):401–6.
CAS
Google Scholar
Sriskandarajah S, Mibus H, Serek M. Transgenic Campanula carpatica plants with reduced ethylene sensitivity. Plant Cell Rep. 2007;26(6):805–13.
Article
CAS
PubMed
Google Scholar
Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, et al. The central role of PhEIN2 in ethylene responses throughout plant development in Petunia. Plant Physiol. 2004;136(2):2900–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsen A, Lütken H, Hegelund JN, Müller R. Ethylene resistance in flowering ornamental plants – improvements and future perspectives. Horticulture Res. 2015;2:15038.
Article
Google Scholar
Heywood VH, Brummitt RK, Culham A, Seberg O. Flowering plant families of the world. Richmond: Kew Publishing; 2007.
Google Scholar
Mansion G, Parolly G, Crowl AA, Mavrodiev E, Cellinese N, Oganesian M, et al. How to handle speciose clades? mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS ONE. 2012;7(11), e50076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cameron AC, Reid MS. 1-MCP blocks ethylene-induced petal abscission of Pelargonium peltatum but the effect is transient. Postharvest Biol Tec. 2001;22:169–77.
Article
CAS
Google Scholar
Porat R, Halevy AH, Serek M, Borochov A. An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flowers. Physiol Plant. 1995;93(4):778–84.
Article
CAS
Google Scholar
Giblin DE. Variation in floral longevity between populations of Campanula rotundifolia (Campanulaceae) in response to fitness accrual rate manipulation. Am J Bot. 2005;92(10):1714–22.
Article
PubMed
Google Scholar
Tanase K, Onozaki T, Satoh S, Shibata M, Ichimura K. Effect of Age on the auto-catalytic ethylene production and the expression of ethylene biosynthetic gene DcACS1 in petals of long-life carnations. Jpn Agric Res Q. 2011;45(1):107–16.
Article
CAS
Google Scholar
Hua J, Chang C, Sun Q, Meyerowitz E. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science. 1995;269(5231):1712–4.
Article
CAS
PubMed
Google Scholar
Ma N, Tan H, Liu X, Xue J, Li Y, Gao J. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J Exp Bot. 2006;57(11):2763–73.
Article
CAS
PubMed
Google Scholar
MöLler R, Lind-Iversen S, Stummann BM, Serek M. Expression of genes for ethylene biosynthetic enzymes and anethylene receptor in senescing flowers of miniature potted roses. J Hortic Sci Biotechnol. 2000;75(1):12–8.
Article
Google Scholar
Hua J, Meyerowitz EM. Ethylene responses Are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998;94(2):261–71.
Article
CAS
PubMed
Google Scholar
Müller R, Stummann BM, Serek M. Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Rep. 2000;19(12):1232–9.
Article
Google Scholar
Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot. 2002;53(368):399–406.
Article
CAS
PubMed
Google Scholar
Müller R, Owen CA, Xue Z-T, Welander M, Stummann BM. Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. J Exp Bot. 2002;53(371):1223–5.
Article
PubMed
Google Scholar
Hu H-L, Do Y-Y, Huang P-L. Expression profiles of a MhCTR1 gene in relation to banana fruit ripening. Plant Physiol Biochem. 2012;56:47–55.
Article
CAS
PubMed
Google Scholar
Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latché A, Giovannoni JJ, et al. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol. 2002;130(3):1132–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams-Phillips L, Barry C, Kannan P, Leclercq J, Bouzayen M, Giovannoni J. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol Biol. 2004;54(3):387–404.
Article
CAS
PubMed
Google Scholar
Cho Y-H, Yoo S-D. Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus. Front Plant Sci. 2015;5(733):1–7.
CAS
Google Scholar
Bie BB, Pan JS, He HL, Yang XQ, Zhao JL, Cai R. Molecular cloning and expression analysis of the ethylene insensitive3 (EIN3) gene in cucumber (Cucumis sativus). Genet Mol Res. 2013;12(4):4179–91.
Article
CAS
PubMed
Google Scholar
Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M, et al. Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol. 2005;348(2):253–64.
Article
CAS
PubMed
Google Scholar
Rieu I, Mariani C, Weterings K. Expression analysis of five tobacco EIN3 family members in relation to tissue‐specific ethylene responses. J Exp Bot. 2003;54(391):2239–44.
Article
CAS
PubMed
Google Scholar
Tieman DM, Ciardi JA, Taylor MG, Klee HJ. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 2001;26(1):47–58.
Article
CAS
PubMed
Google Scholar
Yokotani N, Tamura S, Nakano R, Inaba A, Kubo Y. Characterization of a novel tomato EIN3‐like gene (LeEIL4). J Exp Bot. 2003;54(393):2775–6.
Article
CAS
PubMed
Google Scholar
Iordachescu M, Verlinden S. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. J Exp Bot. 2005;56(418):2011–8.
Article
CAS
PubMed
Google Scholar
Wang Y, Zhang C, Jia P, Wang X, Wang W, Dong L. Isolation and expression analysis of three EIN3-like genes in tree peony (Paeonia suffruticosa). Plant Cell Tiss Org. 2013;112(2):181–90.
Article
CAS
Google Scholar
Xu J, Zhang S. Regulation of ethylene biosynthesis and signaling by protein kinases and phosphatases. Mol Plant. 2014;7(6):939–42.
Article
CAS
Google Scholar
Kendrick MD, Chang C. Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol. 2008;11(5):479–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Röper AC, Lütken H, Christensen B, Boutilier K, Petersen KK, Müller R. Production of interspecific Campanula hybrids by ovule culture: exploring the effect of ovule isolation time. Euphytica. 2015;203(3):643–57.
Article
Google Scholar
Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E. Deployment of new biotechnologies in plant breeding. Nat Biotechnol. 2012;30:231–9.
Article
CAS
PubMed
Google Scholar
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9(1):39.
Article
PubMed
PubMed Central
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41(D1):D36–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lütken H, Jensen LS, Topp SH, Mibus H, Müller R, Rasmussen SK. Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë. Plant Biotech J. 2010;8(2):211–22.
Article
Google Scholar
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 2013;41:W597–600.
Article
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar