Kazan K, Gardiner DM, Manners JM: On the trail of a cereal killer: recent advances in
Fusarium graminearum
pathogenomics and host resistance.
Mol Plant Pathol 2012, 13:399–413.
Article
CAS
PubMed
Google Scholar
Brown NA, Urban M, Van De Meene AML, Hammond-Kosack KE: The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears.
Fungal Biol 2010, 114:555–571.
Article
PubMed
Google Scholar
Bischof M, Eichmann R, Huckelhoven R: Pathogenesis-associated transcriptional patterns in Triticeae.
J Plant Physiol 2011, 168:9–19.
Article
CAS
PubMed
Google Scholar
Buerstmayr H, Ban T, Anderson JA: QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review.
Plant Breed 2009, 128:1–26.
Article
CAS
Google Scholar
Volpi C, Janni M, Lionetti V, Bellincampi D, Favaron F, D’Ovidio R: The Ectopic Expression of a Pectin Methyl Esterase Inhibitor Increases Pectin Methyl Esterification and Limits Fungal Diseases in Wheat.
Mol Plant-Microbe Interact 2011, 24:1012–1019.
Article
CAS
PubMed
Google Scholar
Moscetti I, Tundo S, Janni M, Sella L, Gazzetti K, Tauzin A, Giardina T, Masci S, Favaron F, D’Ovidio R: Constitutive Expression of the Xylanase Inhibitor TAXI-III Delays Fusarium Head Blight Symptoms in Durum Wheat Transgenic Plants.
Mol Plant-Microbe Interact 2013, 26:1464–1472.
Article
CAS
PubMed
Google Scholar
Miedaner T, Longin CFH: Genetic variation for resistance to Fusarium head blight in winter durum material.
Crop Pasture Sci 2014, 65:46–51.
Google Scholar
Tomassini A, Sella L, Raiola A, D’Ovidio R, Favaron F: Characterization and expression of
Fusarium graminearum
endo-polygalacturonases in vitro and during wheat infection.
Plant Pathol 2009, 58:556–564.
Article
CAS
Google Scholar
Wanyoike MW, Kang Z, Heinrich B: Importance of Cell Wall Degrading Enzymes Produced by Fusarium graminearum during Infection of Wheat Heads.
Eur J Pl Pathol 2002, 108:803–810.
Article
Google Scholar
Yang F, Jensen JD, Svensson B, Jorgensen HJL, Collinge DB, Finnie C: Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat.
Mol Plant Pathol 2012, 13:445–453.
Article
CAS
PubMed
Google Scholar
Bellincampi D, Cervone F, Lionetti V: Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions.
Front Plant Sci 2014, 5:228.
Article
PubMed Central
PubMed
Google Scholar
Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell AL: Strangers in the matrix: plant cell walls and pathogen susceptibility.
Trends Plant Sci 2008, 13:610–617.
Article
CAS
PubMed
Google Scholar
Pogorelko G, Lionetti V, Bellincampi D, Zabotina O: Cell wall integrity: Targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens.
Plant Signal Behav 2013, 8:e25435.
Article
PubMed Central
PubMed
Google Scholar
Blümke A, Falter C, Herrfurth C, Sode B, Bode R, Schäfer W, Feussner I, Voigt CA: Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection.
Plant Physiol 2014, 165:346–358.
Article
PubMed Central
PubMed
Google Scholar
King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM: Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi.
Biotechnol Biofuels 2011, 4:4.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vogel J: Unique aspects of the grass cell wall.
Curr Opin Plant Biol 2008, 11:301–307.
Article
CAS
PubMed
Google Scholar
Rennie EA, Scheller HV: Xylan biosynthesis.
Curr Opin Biotechnol 2014, 26:100–107.
Article
CAS
PubMed
Google Scholar
Berrin JG, Juge N: Factors affecting xylanase functionality in the degradation of arabinoxylans.
Biotechnol Lett 2008, 30:1139-1150.
Article
CAS
PubMed
Google Scholar
Fincher GB: Revolutionary Times in Our Understanding of Cell Wall Biosynthesis and Remodeling in the Grasses.
Plant Physiol 2009, 149:27–37.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lionetti V, Cervone F, Bellincampi D: Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases.
J Plant Physiol 2012, 169:1623–1630.
Article
CAS
PubMed
Google Scholar
Chanliaud E, Gidley MJ: In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites.
Plant J 1999, 20:25–35.
Article
CAS
PubMed
Google Scholar
Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T: Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules.
Plant J 2010, 64:657–667.
Article
CAS
PubMed
Google Scholar
Koshijima T, Watanabe T: Association between lignin and carbohydrates in wood and other plant tissues. Springer-Verlag; Springer, Berlin; 2003.
Caffall KH, Mohnen D: The structure, function, and biosynthesis of plant cell wall pectic polysaccharides.
Carbohydr Res 2009, 344:1879–1900.
Article
CAS
PubMed
Google Scholar
Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D’Ovidio R, De Lorenzo G, Cervone F: Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion.
Proc Natl Acad Sci U S A 2010, 107:616–621.
Article
CAS
PubMed Central
PubMed
Google Scholar
Willats WG, McCartney L, Mackie W, Knox JP: Pectin: cell biology and prospects for functional analysis.
Plant Mol Biol 2001, 47:9–27.
Article
CAS
PubMed
Google Scholar
Bonnin E, Le Goff A, Korner R, Vigouroux J, Roepstorff P, Thibault JF: Hydrolysis of pectins with different degrees and patterns of methylation by the endopolygalacturonase of
Fusarium moniliforme
.
Biochim Biophys Acta 2002, 1596:83–94.
Article
CAS
PubMed
Google Scholar
Limberg G, Korner R, Buchholt HC, Christensen TM, Roepstorff P, Mikkelsen JD: Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger.
Carbohydr Res 2000, 327:293–307.
Article
CAS
PubMed
Google Scholar
Wietholter N, Graessner B, Mierau M, Mort AJ, Moerschbacher BM: Differences in the methyl ester distribution of homogalacturonans from near-isogenic wheat lines resistant and susceptible to the wheat stem rust fungus.
Mol Plant Microbe Interact 2003, 16:945–952.
Article
PubMed
Google Scholar
Volpi C, Raiola A, Janni M, Gordon A, O’Sullivan DM, Favaron F, D’Ovidio R: Claviceps purpurea expressing polygalacturonases escaping PGIP inhibition fully infects PvPGIP2 wheat transgenic plants but its infection is delayed in wheat transgenic plants with increased level of pectin methyl esterification.
Plant Physiol Biochem 2013, 73:294–301.
Article
CAS
PubMed
Google Scholar
Baucher M, Monties B, Van Montagu M, Boerjan W: Biosynthesis and genetic engineering of lignin.
Crit Rev Plant Sci 1998, 17:125–197.
Article
CAS
Google Scholar
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W: Lignin Biosynthesis and Structure.
Plant Physiol 2010, 153:895–905.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sattler SE, Funnell-Harris DL: Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?
Front Plant Sci 2013, 4:70. doi:10.3389/fpls.2013.00070.
Article
PubMed Central
PubMed
Google Scholar
Haidukowski M, Visconti A, Perrone G, Vanadia S, Pancaldi D, Covarelli L, Balestrazzi R, Pascale M: Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions.
Phytopathol Mediterr 2012, 51:236–246.
CAS
Google Scholar
Schroeder HW, Christensen JJ: Factors affecting resistance of wheat to scab caused by Gibberella zeae.
Phytopathology 1963, 53:831–838.
Google Scholar
Skyba O, Douglas CJ, Mansfield SD: Syringyl-Rich Lignin Renders Poplars More Resistant to Degradation by Wood Decay Fungi.
Appl Environ Microbiol 2013, 79:2560–2571.
Article
CAS
PubMed Central
PubMed
Google Scholar
Eynck C, Seguin-Swartz G, Clarke WE, Parkin IAP: Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa.
Mol Plant Pathol 2012, 13:887–899.
Article
CAS
PubMed
Google Scholar
Chen F, Reddy MSS, Temple S, Jackson L, Shadle G, Dixon RA: Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.).
Plant J 2006, 48:113–124.
Article
CAS
PubMed
Google Scholar
Bhuiyan NH, Selvaraj G, Wei YD, King J: Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion.
J Exp Bot 2009, 60:509–521.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gomez LD, Bristow JK, Statham ER, McQueen-Mason SJ: Analysis of saccharification in Brachypodium distachyon stems under mild conditions of hydrolysis.
Biotechnol Biofuels 2008, 1:15.
Article
PubMed Central
PubMed
Google Scholar
Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC: Cell wall architecture of the elongating maize coleoptile.
Plant Physiol 2001, 127:551–565.
Article
CAS
PubMed Central
PubMed
Google Scholar
McCartney L, Marcus SE, Knox JP: Monoclonal antibodies to plant cell wall xylans and arabinoxylans.
J Histochem Cytochem 2005, 53:543–546.
Article
CAS
PubMed
Google Scholar
Beaugrand J, Croner D, Debeire P, Chabbert B: Arabinoxylan and hydroxycinnamate content of wheat bran in relation to endoxylanase susceptibility.
J Cereal Sci 2004, 40:223–230.
Article
CAS
Google Scholar
Bily AC, Reid LM, Taylor JH, Johnston D, Malouin C, Burt AJ, Bakan B, Regnault-Roger C, Pauls KP, Arnason JT, Philogène BJ: Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: Resistance factors to Fusarium graminearum.
Phytopathol 2003, 93:712–719.
Article
CAS
Google Scholar
Santiago R, Malvar RA: Role of Dehydrodiferulates in Maize Resistance to Pests and Diseases.
Int J Mol Sci 2010, 11:691–703.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ralph J, Guillaumie S, Grabber JH, Lapierre C, Barriere Y: Genetic and molecular basis of grass cell-wall biosynthesis and degradability. III. Towards a forage grass ideotype.
C R Biol 2004, 327:467–479.
Article
CAS
PubMed
Google Scholar
Molinari HBC, Pellny TK, Freeman J, Shewry PR, Mitchell RAC: Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon.
Front Plant Sci 2013, 4:50. doi:10.3389/fpls.2013.00050.
Article
PubMed Central
PubMed
Google Scholar
Ishii T: Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls.
Carbohydr Res 1991, 219:15–22.
Article
CAS
PubMed
Google Scholar
Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RA: Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses.
Proc Natl Acad Sci U S A 2012, 109:989–993.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chowdhury J, Henderson M, Schweizer P, Burton RA, Fincher GB, Little A: Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with
Blumeria graminis
f. sp.
hordei
.
New Phytol 2014, 204:650–660.
Article
CAS
PubMed
Google Scholar
Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Stone BA, Newbigin EJ, Bacic A, Fincher GB: Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans.
Science 2006, 311:1940–1942.
Article
CAS
PubMed
Google Scholar
Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A: A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis.
Proc Natl Acad Sci U S A 2009, 106:5996–6001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Slikova S, Havrlentova M, Sudyova V, Mihalik D, Gregova E: Cell wall beta-D-glucan during disease progress (Fusarium head blight) in wheat spikes.
Cereal Res Commun 2008, 36:167–169.
Article
CAS
Google Scholar
Clausen MH, Willats WGT, Knox JP: Synthetic methyl hexagalacturonate hapten inhibitors of antihomogalacturonan monoclonal antibodies LM7, JIM5 and JIM7.
Carbohydr Res 2003, 338:1797–1800.
Article
CAS
PubMed
Google Scholar
Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, Marcus SE, Christensen TM, Mikkelsen JD, Murray BS, Knox JP: Modulation of the degree and pattern of methyl esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties and cell adhesion.
J Biol Chem 2001, 276:19404-19413.
Raiola A, Lionetti V, Elmaghraby I, Immerzeel P, Mellerowicz EJ, Salvi G, Cervone F, Bellincampi D: Pectin methylesterase is induced in
Arabidopsis
upon infection and is necessary for a successful colonization by necrotrophic pathogens.
Mol Plant-Microbe Interact 2011, 24:432–440.
Article
CAS
PubMed
Google Scholar
Bethke G, Grundman RE, Sreekanta S, Truman W, Katagiri F, Glazebrook J: Arabidopsis PECTIN METHYLESTERASES Contribute to Immunity Against Pseudomonas syringae.
Plant Physiol 2014, 164:1093–1107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lionetti V, Raiola A, Cervone F, Bellincampi D: Transgenic expression of pectin methylesterase inhibitors limits tobamovirus spread in tobacco and Arabidopsis.
Mol Plant Pathol 2014, 15:265–274.
Article
CAS
PubMed
Google Scholar
Phalip V, Goubet F, Carapito R, Jeltsch JM: Plant Cell Wall Degradation with a Powerful Fusarium graminearum Enzymatic Arsenal.
J Microbiol Biotechnol 2009, 19:573–581.
CAS
PubMed
Google Scholar
De Lorenzo G, Castoria R, Bellincampi D, Cervone F: Fungal invasion enzymes and their inhibition. In The Mycota. V. Plant Relationships, Part B. Edited by Carroll GC, Tudzynski P. Berlin: Springer-Verlag; 1997:61–83.
Google Scholar
Aleandri MP, Magro P, Chilosi G: Modulation of host pH during the wheat-Fusarium culmorum interaction and its influence on the production and activity of pectolytic enzymes.
Plant Pathol 2007, 56:517–525.
Article
CAS
Google Scholar
Kikot GE, Hours RA, Alconada TM: Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review.
J Basic Microbiol 2009, 49:231–241.
Article
CAS
PubMed
Google Scholar
Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D’Ovidio R: Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen
Fusarium graminearum
.
Plant Biol 2011, 31:8. doi: 10.1111/j.1438-8677.2011.00449.x.
Google Scholar
Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME: Pectin methylesterase and its proteinaceous inhibitor: a review.
Carbohydr Res 2010, 345:2583–2595.
Article
CAS
PubMed
Google Scholar
Reca IB, Lionetti V, Camardella L, D’Avino R, Giardina T, Cervone F, Bellincampi D: A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1.
Plant Mol Biol 2012, 79:429–442.
Article
CAS
PubMed
Google Scholar
Ma L, Jiang S, Lin GM, Cai JH, Ye XX, Chen HB, Li MH, Li HP, Takac T, Samaj J, Xu C: Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp cubense.
J Exp Bot 2013, 64:2219–2229.
Article
CAS
PubMed Central
PubMed
Google Scholar
Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, Brutnell T, Sibout R, Bevan M, Budak H, Caicedo AL, Gao C, Gu Y, Hazen SP, Holt BF 3rd, Hong SY, Jordan M, Manzaneda AJ, Mitchell-Olds T, Mochida K, Mur LA, Park CM, Sedbrook J, Watt M, Zheng SJ, Vogel JP: Brachypodium as a Model for the Grasses: Today and the Future.
Plant Physiol 2011, 157:3–13.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang MJ, Yuan DJ, Gao WH, Li Y, Tan JF, Zhang XL: A Comparative Genome Analysis of PME and PMEI Families Reveals the Evolution of Pectin Metabolism in Plant Cell Walls.
PLoS One 2013, 8:e72082.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen SQ, Huang ZF, Dai Y, Qin SW, Gao YY, Zhang LL, Gao Y, Chen JM: The Development of 7E Chromosome-Specific Molecular Markers for Thinopyrum elongatum Based on SLAF-seq Technology.
PLoS One 2013, 8:e65122.
Article
CAS
PubMed Central
PubMed
Google Scholar
Walter S, Nicholson P, Doohan FM: Action and reaction of host and pathogen during Fusarium head blight disease.
New Phytol 2010, 185:54–66.
Article
CAS
PubMed
Google Scholar
Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ: Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum.
Proc Natl Acad Sci U S A 2005, 102:16892–16897.
Article
CAS
PubMed Central
PubMed
Google Scholar
Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC, Buerstmayr H: Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum x Triticum durum.
Theor Appl Genet 2012, 125:1751–1765.
Article
PubMed Central
PubMed
Google Scholar
Ban T, Watanabe N: The effects of chromosomes 3A and 3B on resistance to Fusarium head blight in tetraploid wheat.
Hereditas 2001, 135:95–99.
Article
CAS
PubMed
Google Scholar
Pelegrini PB, Franco OL: Plant gamma-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins.
Int J Biochem Cell Biol 2005, 37:2239–2253.
Article
CAS
PubMed
Google Scholar
Deepak S, Shailasree S, Kini RK, Muck A, Mithofer A, Shetty SH: Hydroxyproline-rich Glycoproteins and Plant Defence.
J Phytopathol 2010, 158:585–593.
CAS
Google Scholar
Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D’Ovidio R: The expression of a bean polygalacturonase-inhibiting proteins in transgenic wheat confers increased resistance to the fungal pathogen
Bipolaris sorokiniana
.
Mol Plant-Microbe Interact 2008, 21:171–177.
Article
CAS
PubMed
Google Scholar
Fukushima RS, Hatfield RD: Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.
J Agric Food Chem 2004, 52:3713–3720.
Article
CAS
PubMed
Google Scholar
Sasaki M, Yamamoto Y, Matsumoto H: Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots.
Physiol Plant 1996, 96:193–198.
Article
CAS
Google Scholar
Ralph J, Hatfield RD: Pyrolysis-Gc-Ms Characterization of Forage Materials.
J Agric Food Chem 1991, 39:1426–1437.
Article
CAS
Google Scholar
Klavons JA, Bennett RD: Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins.
J Agric Food Chem 1986, 34:597–599.
Article
CAS
Google Scholar
Filisetti-Cozzi TMCC, Carpita NC: Measurement of uronic acids without interference from neutral sugars.
Anal Biochem 1991, 197:157–162.
Article
CAS
PubMed
Google Scholar
Updegraff DM: Semimicro determination of cellulose in biological material.
Anal Biochem 1969, 32:420–424.
Article
CAS
PubMed
Google Scholar
Scott TA Jr, Melvin EH: Determination of dextran with anthrone.
Anal Chem 1953, 25:1656–1661.
Article
CAS
Google Scholar
Willats WG, Limberg G, Buchholt HC, van Alebeek GJ, Benen J, Christensen TM, Visser J, Voragen A, Mikkelsen JD, Knox JP: Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation.
Carbohydr Res 2000, 327:309–320.
Article
CAS
PubMed
Google Scholar
Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version II.
Plant Mol Biol Rep 1983, 1:19–21.
Article
CAS
Google Scholar
Sears ER: The aneuploids of common wheat.
Mo Agric Exp Stn Res Bull 1954, 572:1-58.
Sears ER: Nullisomic-tetrasomic combinations in hexaploid wheat. In: Chromosome manipulations and plant genetics. Riley R. and Lewis K.R. edition. Oliver & Boyd, Edinburgh; 1966:29–45.
Sears ER, Sears LMS: The telocentric chromosomes of common wheat. Edited by Ramanujam S. Proc. 5th Int Wheat Genetics Symp New Dehli, Indian Agricultural Research Institute 1978:389–407.
Endo TR, Gill BS: The deletion stocks of common wheat.
J Hered 1996, 87:295–307.
Article
CAS
Google Scholar