Wasternack C, Hause B: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development: an update to the 2007 review in Annals of Botany. Ann Bot. 2013, 111: 1021-1058. 10.1093/aob/mct067.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Geyter N, Gholami A, Goormachtig S, Goossens A: Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci. 2012, 17: 349-359. 10.1016/j.tplants.2012.03.001.
Article
CAS
PubMed
Google Scholar
Wolucka B, Goossens A, Inzé D: Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot. 2005, 56: 2527-2538. 10.1093/jxb/eri246.
Article
CAS
PubMed
Google Scholar
Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H: Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 2005, 44: 653-668. 10.1111/j.1365-313X.2005.02560.x.
Article
CAS
PubMed
Google Scholar
Browse J: The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry. 2009, 70: 1539-1546. 10.1016/j.phytochem.2009.08.004.
Article
CAS
PubMed
Google Scholar
Staswick P, Tiryaki I, Rowe M: Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell. 2002, 14: 1405-1415. 10.1105/tpc.000885.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suza W, Staswick P: The role of JAR1 in Jasmonoyl-L: −isoleucine production during Arabidopsis wound response. Planta. 2008, 227: 1221-1232. 10.1007/s00425-008-0694-4.
Article
CAS
PubMed
Google Scholar
Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R: (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol. 2009, 5: 344-350. 10.1038/nchembio.161.
Article
CAS
PubMed
Google Scholar
Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D: The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell. 2009, 21: 2220-2236. 10.1105/tpc.109.065730.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feys BJF, Benedetti C, Penfold C, Turner J: Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell. 1994, 6: 751-759. 10.1105/tpc.6.5.751.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie D, Feys B, James S, Nieto-Rostro M, Turner J: COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science. 1998, 280: 1091-1094. 10.1126/science.280.5366.1091.
Article
CAS
PubMed
Google Scholar
Xu L, Liu F, Lechner E, Genschik P, Crosby W, Ma H, Peng W, Huang D, Xie D: The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell. 2002, 14: 1919-1935. 10.1105/tpc.003368.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ren C, Pan J, Peng W, Genschik P, Hobbie L, Hellmann H, Estelle M, Gao B, Peng J, Sun C, Xie D: Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant J. 2005, 42: 514-524. 10.1111/j.1365-313X.2005.02394.x.
Article
CAS
PubMed
Google Scholar
Moon J, Parry G, Estelle M: The ubiquitin-proteasome pathway and plant development. Plant Cell. 2004, 16: 3181-3195. 10.1105/tpc.104.161220.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R: The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 2011, 23: 701-715. 10.1105/tpc.110.080788.
Article
PubMed Central
PubMed
Google Scholar
Figueroa P, Browse J: The Arabidopsis JAZ2 promoter contains a G-Box and thymidine-rich module that are necessary and sufficient for jasmonate-dependent activation by MYC transcription factors and repression by JAZ proteins. Plant Cell Physiol. 2012, 53: 330-343. 10.1093/pcp/pcr178.
Article
CAS
PubMed
Google Scholar
Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R: The JAZ family of repressors is the missing link in jasmonate signalling. Nature. 2007, 448: 666-671. 10.1038/nature06006.
Article
CAS
PubMed
Google Scholar
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S, Howe G, Browse J: JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature. 2007, 448: 661-665. 10.1038/nature05960.
Article
CAS
PubMed
Google Scholar
Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer E: A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell. 2007, 19: 2470-2483. 10.1105/tpc.107.050708.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chini A, Fonseca S, Chico J, Fernández-Calvo P, Solano R: The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. 2009, 59: 77-87. 10.1111/j.1365-313X.2009.03852.x.
Article
CAS
PubMed
Google Scholar
Pauwels L, Goossens A: The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell. 2011, 23: 3089-3100. 10.1105/tpc.111.089300.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G: The tify family previously known as ZIM. Trends Plant Sci. 2007, 12: 239-244. 10.1016/j.tplants.2007.04.004.
Article
CAS
PubMed
Google Scholar
Chung H, Howe G: A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell. 2009, 21: 131-145. 10.1105/tpc.108.064097.
Article
PubMed Central
CAS
PubMed
Google Scholar
Demianski A, Chung K, Kunkel B: Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis. Mol Plant Pathol. 2012, 13: 46-57. 10.1111/j.1364-3703.2011.00727.x.
Article
CAS
PubMed
Google Scholar
Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K: MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol. 2012, 160: 541-555. 10.1104/pp.112.202697.
Article
PubMed Central
PubMed
Google Scholar
Chung H, Cooke T, Depew C, Patel L, Ogawa N, Kobayashi Y, Howe G: Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. Plant J. 2010, 63: 613-622. 10.1111/j.1365-313X.2010.04265.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moreno J, Shyu C, Campos M, Patel L, Chung H, Yao J, He S, Howe G: Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. Plant Physiol. 2013, 162: 1006-1017. 10.1104/pp.113.218164.
Article
PubMed Central
CAS
PubMed
Google Scholar
Staiger D, Brown JWS: Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell. 2013, 25: 3640-3656. 10.1105/tpc.113.113803.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chrestin H, Bangratz J, d’Auzac J, Jacob JL: Role of the lutoidic tonoplast in the senescence and degradation of the laticifers of Hevea brasiliensis . Pflanzenphysiol. 1984, Bd. 114-S: 261-268. 10.1016/S0044-328X(84)80020-3.
Article
Google Scholar
Gohet E: La production de latex par Hevea brasiliensis. Relation avec la croissance: influence de différents facteurs: origine clonale, stimulation hormonale, réserves hydrocarbonées. Physiologie végétale et développement. 1996, Université Montpellier II, Montpellier
Google Scholar
Jacob J-L, Prévôt J-C, Roussel D, Lacrotte R, Serres E, d’Auzac J, Eschbach J-M, Omont H: Yield limiting factors, latex physiological parameters, latex diagnosis, and clonal typology. Physiology of Rubber Tree Latex. Edited by: Auzac J, Jacob J-L, Chrestin H. 1989, CRC press, Inc, Boca Raton, Florida, 345-382.
Google Scholar
Sun J-Q, Jiang H-L, Li C-Y: Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol Plant. 2011, 4: 607-615. 10.1093/mp/ssr008.
Article
CAS
PubMed
Google Scholar
Hao B-Z, Wu J-L: Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Ann Bot. 2000, 85: 37-43. 10.1006/anbo.1999.0995.
Article
CAS
Google Scholar
Zeng R, Duan C, Li X, Tian W, Nie Z: Vacuolar-type inorganic pyrophosphatase located on the rubber particle in the latex is an essential enzyme in regulation of the rubber biosynthesis in Hevea brasiliensis. Plant Sci. 2009, 176: 602-607. 10.1016/j.plantsci.2009.01.009.
Article
CAS
Google Scholar
Duan C, Argout X, Gébelin V, Summo M, Dufayard JF, Leclercq J, Kuswanhadi ᅟ, Piyatrakul P, Pirrello J, Rio M, Champion A, Montoro P: Identification of the hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics 2013, 14:30.,
Article
PubMed Central
CAS
PubMed
Google Scholar
Duan C, Rio M, Leclercq J, Bonnot F, Oliver G, Montoro P: Gene expression pattern in response to wounding, methyl jasmonate and ethylene in the bark of Hevea brasiliensis. Tree Physiol. 2010, 30: 1349-1359. 10.1093/treephys/tpq066.
Article
CAS
PubMed
Google Scholar
Piyatrakul P, Putranto R-A, Martin F, Rio M, Dessailly F, Leclercq J, Dufayard J-F, Lardet L, Montoro P: Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. BMC Plant Biol. 2012, 12: 244-10.1186/1471-2229-12-244.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuswanhadi , Leclercq J, Rio M, Tregear J, Ducamp-Collin M-N, Montoro P: Isolation of three members of the multigene family encoding ACC oxidases in Hevea brasiliensis and Investigation of their responses to ethylene stimulation and wounding. J Rubber Res. 2010, 13: 185-205.
CAS
Google Scholar
Piyatrakul P, Yang M, Putranto R-A, Pirrello J, Dessailly F, Hu S, Summo M, Theeravatanasuk K, Leclercq J, Montoro P: Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis. PLoS One. 2014, 9: e99367-10.1371/journal.pone.0099367.
Article
PubMed Central
PubMed
Google Scholar
Peng S-Q, Xu J, Li H-L, Tian W-M: Cloning and molecular characterization of HbCOI1 from Hevea brasiliensis. Biosci Biotechnol Biochem. 2009, 73: 665-670. 10.1271/bbb.80721.
Article
CAS
PubMed
Google Scholar
Tian WW, Huang WF, Zhao Y: Cloning and characterization of HbJAZ1 from the laticifer cells in rubber tree (Hevea brasiliensis Muell. Arg.). Trees. 2010, 24: 771-779. 10.1007/s00468-010-0447-4.
Article
CAS
Google Scholar
Zhao Y, Zhou L-M, Chen Y-Y, Yang S-G, Tian W-M: MYC genes with differential responses to tapping, mechanical wounding, ethrel and methyl jasmonate in laticifers of rubber tree (Hevea brasiliensis Muell. Arg.). J Plant Physiol. 2011, 168: 1649-1658. 10.1016/j.jplph.2011.02.010.
Article
CAS
PubMed
Google Scholar
Chow K-S, Mat-Isa M-N, Bahari A, Ghazali A-K, Alias H, Mohd-Zainuddin Z, Hoh C-C, Wan K-L: Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. J Exp Bot. 2012, 63: 1863-1871. 10.1093/jxb/err363.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chow K-S, Wan K-L, Isa M, Bahari A, Tan S-H, Harikrishna K, Yeang H-Y: Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot. 2007, 58: 2429-2440. 10.1093/jxb/erm093.
Article
CAS
PubMed
Google Scholar
Li D, Deng Z, Chen C, Xia Z, Wu M, He P, Chen S: Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol. 2010, 10: 140-10.1186/1471-2229-10-140.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X: RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol. 2011, 77: 299-308. 10.1007/s11103-011-9811-z.
Article
CAS
PubMed
Google Scholar
Li D, Deng Z, Qin B, Liu X, Men Z: De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics. 2012, 13: 192-10.1186/1471-2164-13-192.
Article
PubMed Central
CAS
PubMed
Google Scholar
Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, Sraphet S, Yoocha T, Sangsrakru D, Chanprasert J, Ngamphiw C, Jomchai N, Therawattanasuk K, Tangphatsornruang S: Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Res. 2011, 18: 471-482. 10.1093/dnares/dsr034.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998, 10: 1391-1406. 10.1105/tpc.10.8.1391.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lorenzo O, Piqueras R, Sánchez-Serrano J, Solano R: ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003, 15: 165-178. 10.1105/tpc.007468.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis TA: Molecular Cloning: a Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
Google Scholar
Putranto R-A, Sanier C, Leclercq J, Duan C, Rio M, Jourdan C, Thaler P, Sabau X, Argout X, Montoro P: Differential gene expression in different types of Hevea brasiliensis roots. Plant Sci. 2012, 183: 149-158. 10.1016/j.plantsci.2011.08.005.
Article
CAS
PubMed
Google Scholar
Team RC: R: A language and environment for statistical computing. In R Foundation for Statistical Computing. Edited by Computing RFfS. Vienna, Austria: ᅟ; 2012.
Google Scholar
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B: gplots: Various R programming tools for plotting data. In ᅟ. 2110th edition; 2012.
Google Scholar
Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007, 56: 564-577. 10.1080/10635150701472164.
Article
CAS
PubMed
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010, 59: 307-321. 10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Gascuel O: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997, 14: 685-695. 10.1093/oxfordjournals.molbev.a025808.
Article
CAS
PubMed
Google Scholar
Dufayard J-F, Duret L, Penel S, Gouy M, Rechenmann F, Perrière G: Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases. Bioinformatics. 2005, 21: 2596-2603. 10.1093/bioinformatics/bti325.
Article
CAS
PubMed
Google Scholar
Han M, Zmasek C: phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics. 2009, 10: 356-10.1186/1471-2105-10-356.
Article
PubMed Central
PubMed
Google Scholar
Chaabouni S, Jones B, Delalande C, Wang H, Li Z, Mila I, Frasse P, Latche A, Pech JC, Bouzayen M: Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot. 2009, 60: 1349-1362. 10.1093/jxb/erp009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Curtis M, Grossniklaus U: A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003, 133: 462-469. 10.1104/pp.103.027979.
Article
PubMed Central
CAS
PubMed
Google Scholar
Terol J, Domingo C, Talón M: The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene. 2006, 371: 279-290. 10.1016/j.gene.2005.12.014.
Article
CAS
PubMed
Google Scholar
Chang K, Xiang H, Dunaway-Mariano D: Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase. Biochemistry. 1997, 36: 15650-15659. 10.1021/bi971262p.
Article
CAS
PubMed
Google Scholar
Paul ES: JAZing up jasmonate signaling. Trends Plant Sci. 2008, 13: 66-71.
Google Scholar
Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani K, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K, Miyao A, Hirochika H, Hattori T, Takeda S: RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. Plant Cell. 2013, 25: 1709-1725. 10.1105/tpc.113.112052.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kazan K: Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci. 2003, 8: 468-471. 10.1016/j.tplants.2003.09.001.
Article
CAS
PubMed
Google Scholar
Carvalho RF, Feijão CV, Duque P: On the physiological significance of alternative splicing events in higher plants. Protoplasma. 2013, 250: 639-650. 10.1007/s00709-012-0448-9.
Article
CAS
PubMed
Google Scholar
McGlincy N, Smith C: Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense?. Trends Biochem Sci. 2008, 33: 385-393. 10.1016/j.tibs.2008.06.001.
Article
CAS
PubMed
Google Scholar
Nicholson P, Mühlemann O: Cutting the nonsense: the degradation of PTC-containing mRNAs. Biochem Soc Trans. 2010, 38: 1615-1620. 10.1042/BST0381615.
Article
CAS
PubMed
Google Scholar
Seo P, Hong S-Y, Kim S-G, Park C-M: Competitive inhibition of transcription factors by small interfering peptides. Trends Plant Sci. 2011, 16: 541-549. 10.1016/j.tplants.2011.06.001.
Article
CAS
PubMed
Google Scholar
Marquez Y, Brown J, Simpson C, Barta A, Kalyna M: Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 2012, 22: 1184-1195. 10.1101/gr.134106.111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heil M, Greiner S, Meimberg H, Krüger R, Noyer J-L, Heubl G, Linsenmair K, Boland W: Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature. 2004, 430: 205-208. 10.1038/nature02703.
Article
CAS
PubMed
Google Scholar