Diener TO, Ed: The Viroids. Volume 344. Plenum Press, New York;1987.
Google Scholar
Owens RA, Blackburn M, Ding B: Possible involvement of the phloem lectin in long-distance viroid movement. Mol Plant Microbe Interact. 2001, 14: 905-909. 10.1094/MPMI.2001.14.7.905.
Article
PubMed
CAS
Google Scholar
Harders J, Lukacs N, Robert-Nicoud M, Jovin TM, Riesner D: Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy. EMBO J. 1989, 8: 3941-3949.
PubMed
CAS
PubMed Central
Google Scholar
Qi Y, Ding B: Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell. 2003, 15: 2566-2577. 10.1105/tpc.016576.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schnölzer M, Haas B, Ramm K, Hofmann H, Sänger HL: Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTVd). EMBO J. 1985, 4: 2181-2190.
PubMed
PubMed Central
Google Scholar
Rodriguez JL, Garcia-Martinez JL, Flores R: The relationship between plant growth substances content and infection of Gynura aurantiaca DC by citrus exocortis viroid. Physiol Plant Pathol. 1978, 13: 355-363. 10.1016/0048-4059(78)90052-8.
Article
CAS
Google Scholar
Vera P, Hernandez-Yago J, Conejero V: "Pathogenesis-related" P1 (p14) protein. Vacuolar and apoplastic localization in leaf tissue from tomato plants infected with citrus exocortis viroid: In vitro synthesis and processing. J Gen Virol. 1989, 70: 1933-1942. 10.1099/0022-1317-70-8-1933.
Article
CAS
Google Scholar
Vera P, Tornero P, Conejero V: Cloning and expression of a viroid-induced peroxidase from tomato plants. Mol Plant-Microbe Interact. 1993, 6: 790-794.
PubMed
CAS
Google Scholar
Ruiz-Medrano R, Jimenez-Moraila B, Herrera-Estrella L, Rivera-Bustamante RF: Nucleotide sequence of an osmotin-like cDNA induced in tomato during viroid infection. Plant Mol Biol. 1992, 20: 1199-1202. 10.1007/BF00028909.
Article
PubMed
CAS
Google Scholar
Rodrigo I, Vera P, Tornero P, Hernandez-Yago J, Conejero V: cDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor. Plant Phys. 1993, 102: 939-945. 10.1104/pp.102.3.939.
Article
CAS
Google Scholar
Tornero P, Conejero V, Vera P: A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection. Mol Gen Genet. 1994, 243: 47-53. 10.1007/BF00283875.
Article
PubMed
CAS
Google Scholar
Tornero P, Conejero V, Vera P: Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: Similarity of functional domains to subtilisin-like endoproteases. Proc Natl Acad Sci USA. 1996, 93: 6332-6337. 10.1073/pnas.93.13.6332.
Article
PubMed
CAS
PubMed Central
Google Scholar
Domingo C, Conejero V, Vera P: Genes encoding acidic and basic class III β-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Mol Biol. 1994, 24: 725-732. 10.1007/BF00029854.
Article
PubMed
CAS
Google Scholar
Gadea J, Mayda ME, Conejero V, Vera P: Characterization of defense-related genes ectopically expressed in viroid-infected tomato plants. Mol Plant-Microbe Interact. 1996, 9: 409-415.
Article
PubMed
CAS
Google Scholar
Itaya A, Matsuda Y, Gonzales RA, Nelson RS, Ding B: Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol Plant Microbe Interact. 2002, 10: 990-999. 10.1094/MPMI.2002.15.10.990.
Article
Google Scholar
Vidal AM, Ben-Cheikh W, Talón M, García-Martínez JL: Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid. Planta. 2003, 216: 442-448. 10.1007/s00425-003-0999-2.
Article
Google Scholar
Qi Y, Ding B: Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA. Plant Cell. 2003, 15: 1360-1374. 10.1105/tpc.011585.
Article
PubMed
CAS
PubMed Central
Google Scholar
Owens RA, Chen W, Hu Y, Hsu Y-H: Suppression of potato spindle tuber viroid replication and symptom expression by mutations which stabilize the pathogenicity domain. Virology. 1995, 208: 554-564. 10.1006/viro.1995.1186.
Article
PubMed
CAS
Google Scholar
Owens RA, Steger G, Hu Y, Fels A, Hammond RW, Riesner D: RNA structural features responsible for potato spindle tuber viroid pathogenicity. Virology. 1996, 222: 144-158. 10.1006/viro.1996.0405.
Article
PubMed
CAS
Google Scholar
Owens RA, Thompson SM, Steger G: Effects of random mutagenesis upon potato spindle tuber viroid replication and symptom expression. Virology. 1991, 185: 18-31. 10.1016/0042-6822(91)90749-2.
Article
PubMed
CAS
Google Scholar
Hammond RW: Analysis of the virulence modulating region of potato spindle tuber viroid (PSTVd) by site-directed mutagenesis. Virology. 1992, 187: 654-662. 10.1016/0042-6822(92)90468-5.
Article
PubMed
CAS
Google Scholar
Wang M-B, Bian X-Y, Wu L-X, Smith NA, Isenegger D, Wu R-M, Masuta C, Vance VB, Watson JM, Rezaian A, Dennis ES, Waterhouse PM: On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc Natl Acad Sci USA. 2004, 101: 3275-3280. 10.1073/pnas.0400104101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y, Takeda R, Harris AR, Molina C, Nelson RC, Ding B: A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol. 2007, 81: 2980-2994. 10.1128/JVI.02339-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Machida S, Yamahata N, Watanuki H, Owens RA, Sano T: Successive accumulation of two size classes of viroid-specific small RNAs in potato spindle tuber viroid-infected plants. J Gen Virol. 2007, 88: 3452-3457. 10.1099/vir.0.83228-0.
Article
PubMed
CAS
Google Scholar
Matoušek J, Kozlová P, Orctová L, Schmitz A, Pešina K, Bannach O, Diermann N, Steger G, Riesner D: Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis. Biol Chem. 2007, 388: 1-13. 10.1515/BC.2007.001.
Article
PubMed
Google Scholar
Papaefthimiou I, Hamilton A, Denti M, Baulcombe D, Tsagris M, Tabler M: Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res. 2001, 29: 2395-2400. 10.1093/nar/29.11.2395.
Article
PubMed
CAS
PubMed Central
Google Scholar
Denti MA, Boulta A, Tsagris M, Tabler M: Short interfering RNAs specific for potato spindle tuber viroid are found in the cytoplasm but not in the nucleus. Plant J. 2004, 37: 762-769. 10.1111/j.1365-313X.2004.02001.x.
Article
PubMed
CAS
Google Scholar
Vera P, Conejero V: Citrus exocortis viroid alters the in vitro pattern of protein phosphorylation of tomato leaf proteins. Mol Plant-Microbe Interact. 1990, 3: 28-32.
Article
CAS
Google Scholar
Crum CJ, Hiddinga HJ, Roth DA: Tobacco mosaic virus infection stimulates the phosphorylation of a plant protein associated with double-stranded RNA-dependent protein kinase activity. J Biol Chem. 1988, 263: 13440-13443.
PubMed
CAS
Google Scholar
Hiddinga HJ, Crum CJ, Roth DA: Viroid-induced phosphorylation of a host protein related to a dsRNA-dependent protein kinase. Science. 1988, 241: 451-453. 10.1126/science.3393910.
Article
PubMed
CAS
Google Scholar
Meurs E, Chong K, Galabru J, Thomas NSB, Kerr IM, Williams BRG, Hovanessian AG: Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell. 1990, 62: 379-390. 10.1016/0092-8674(90)90374-N.
Article
PubMed
CAS
Google Scholar
Diener TO, Hammond RW, Black T, Katze MG: Mechanism of viroid pathogenesis: Differential activation of the interferon-induced, double-stranded RNA-activated, Mr 68000 protein kinase by viroid strains of varying pathogenicity. Biochemie. 1993, 75: 533-538. 10.1016/0300-9084(93)90058-Z.
Article
CAS
Google Scholar
Hammond RW, Zhao Y: Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid. Mol Plant-Microbe Interact. 2000, 13: 903-910. 10.1094/MPMI.2000.13.9.903.
Article
PubMed
CAS
Google Scholar
Christensen SK, Dagenais N, Chory J, Weigel D: Regulation of auxin response by the protein kinase PINOID. Cell. 2000, 100: 469-478. 10.1016/S0092-8674(00)80682-0.
Article
PubMed
CAS
Google Scholar
Devarenne TP, Ekengren SK, Pedley KF, Martin GB: Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO J. 2006, 25: 255-265. 10.1038/sj.emboj.7600910.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ruiz-Rivero OJ, Prat S: A -308 deletion of the tomato LAP promoters is able to direct flower-specific and MeJA-induced expression in transgenic plants. Plant Mol Biol. 1998, 36: 639-648. 10.1023/A:1005980028203.
Article
PubMed
CAS
Google Scholar
Fleet CM, Sun T-P: A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol. 2005, 8: 77-85. 10.1016/j.pbi.2004.11.015.
Article
PubMed
CAS
Google Scholar
Tamaoki M, Kusaba S, Kano-Murakami Y, Matsuoka M: Ectopic expression of a tobacco Homeobox Gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant Cell Physiol. 1997, 38: 917-927.
Article
PubMed
CAS
Google Scholar
Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y: Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell. 2000, 12: 910-915. 10.1105/tpc.12.6.901.
Article
Google Scholar
Caderas D, Muster M, Vogler H, Mandel T, Rose JKC, McQueen-Mason S, Kuhlemeier C: Limited correlation between expansin gene expression and elongation growth rate. Plant Phys. 2000, 123: 1399-1413. 10.1104/pp.123.4.1399.
Article
CAS
Google Scholar
Van Dorst HLM, Peters D: Some biological observations on pale fruit, a viroid-incited disease of cucumber. Neth J Plant Pathol. 1974, 80: 85-96. 10.1007/BF01980613.
Article
Google Scholar
Horst RK, Langhans RW, Smith S: Effects of chrysanthemum stunt, chlorotic mottle, aspermy and mosaic on flowering and rooting of chrysanthemums. Phytopathology. 1977, 67: 9-14. 10.1094/Phyto-67-9.
Article
Google Scholar
Hooker WJ, Tai W, Yang TC: Germination reduction in PSTV infected tomato pollen. Am Potato J. 1978, 55: 378-10.1007/BF02852012.
Article
Google Scholar
Takahaski T, Chiba K, Ozaki R, Sadakata H, Andoh Y, Yoshikawa N: Growth characteristics in cultured cucumber tissues infected with hop stunt viroid. J Phytopathol. 1992, 136: 288-296. 10.1111/j.1439-0434.1992.tb01311.x.
Article
Google Scholar
Duran-Vila N, Semancik JS: Effects of exogeneous auxins on tomato tissue infected with the citrus exocortis viroid. Phytopathology. 1982, 72: 777-781. 10.1094/Phyto-72-777.
Article
Google Scholar
Bishopp A, Mähönin AP, Helariutta Y: Signs of change: hormone receptors that regulate plant development. Development. 2006, 133: 1857-1869. 10.1242/dev.02359.
Article
PubMed
CAS
Google Scholar
Biemelt S, Tschiersch H, Sonnewald U: Impact of altered gibberrellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol. 2004, 135: 254-265. 10.1104/pp.103.036988.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schomburg FM, Bizzell M, Lee DJ, Zeevart JAD, Amasino RA: Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell. 2003, 15: 151-163. 10.1105/tpc.005975.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sun TP, Gubler F: Molecular mechanisms of gibberrellin signaling in plants. Ann Rev Plant Biol. 2004, 55: 197-223. 10.1146/annurev.arplant.55.031903.141753.
Article
CAS
Google Scholar
Bögre L, Ökrész L, Henriques R, Anthony RG: Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci. 2003, 8: 424-431. 10.1016/S1360-1385(03)00188-2.
Article
PubMed
Google Scholar
Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R: The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar transport. Development. 2001, 128: 4047-4067.
Google Scholar
Frödin M, Antal TL, Dümmler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM: A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J. 2002, 21: 5396-5407. 10.1093/emboj/cdf551.
Article
PubMed
PubMed Central
Google Scholar
Zegzouti H, Anthony RG, Jahchan N, Bögre L, Christensen SK: Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) in Arabidopsis. Proc Natl Acad Sci USA. 2006, 103: 6404-6409. 10.1073/pnas.0510283103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zegzouti H, Li W, Lorenz TC, Xie M, Payne CT, Smith K, Glenny S, Payne GS, Christensen SK: Structural and functional insights into the regulation of Arabidopsis AGC VIIIa kinases. J Biol Chem. 2006, 281: 35520-35530. 10.1074/jbc.M605167200.
Article
PubMed
CAS
Google Scholar
Galvan-Ampudia CS, Offringa R: Plant evolution: AGC kinase tell the auxin tale. Trends Plant Sci. 12: 541-547. 10.1016/j.tplants.2007.10.004.
Droge-Laser W, Kaiser A, Lindsay WP, Halkier BA, Loake GJ, Doerner P, Dixon RA, Lamb C: Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J. 1997, 16: 726-738. 10.1093/emboj/16.4.726.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pastori GM, Foyer CH: Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Phys. 2002, 129: 460-468. 10.1104/pp.011021.
Article
CAS
Google Scholar
Li L-C, Okimo ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R: Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA. 2006, 103: 17337-17342. 10.1073/pnas.0607015103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zentalla R, Zhang Z-L, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun T-P: Global analysis of DELLA targets in early gibberellin signaling in Arabidopsis. Plant Cell. 2007, 19: 3037-3057. 10.1105/tpc.107.054999.
Article
Google Scholar
Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science. 1985, 227: 1229-1231. 10.1126/science.227.4691.1229.
Article
CAS
Google Scholar
Cutt JR, Dixon DC, Carr JP, Klessig DF: Isolation and nucleotide sequence analysis of cDNA clones for the pathogenesis-related proteins PR1a, PR1b, and PR1c of Nicotiana tabacum cv. Xanthi nc induced by TMV infections. Nucleic Acids Res. 1988, 16: 9861-10.1093/nar/16.20.9861.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pautot V, Holzer FM, Reisch B, Walling LL: Leucine aminopeptidase: An inducible component of the defense response in Lycopersison esculentum (tomato). Proc Natl Acad Sci USA. 1993, 90: 9906-9910. 10.1073/pnas.90.21.9906.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rozen S, Skaletsky HJ: Primer3 on the WWW for general usersand for biologist programmers. In Bioinformatics Methods and Protocols:Methods in Molecular Biology Edited by: Krawetz S, Misener S.Totowa, NJ: Humana Press; 2000:365-386.
Google Scholar
Maurer-Stroh S, Eisenhaber B, Eisenhaber F: N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol. 2002, 317: 541-547. 10.1006/jmbi.2002.5426.
Article
PubMed
CAS
Google Scholar