Van Loon LC, Pierpoint WS, Boller T, Conejero V: Recommendation for naming plant pathogenesis-related proteins. Plant Mol Biol Rep. 1994, 12 (Suppl 3): 245-264. 10.1007/BF02668748.
Article
Google Scholar
Kav NNV, Srivastava S, Goonewardene L, Blade SF: Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol. 2004, 145 (Suppl 2): 217-230. 10.1111/j.1744-7348.2004.tb00378.x.
Article
Google Scholar
Liu J-J, Ekramoddoullah AKM: The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol. 2006, 68 (Suppl 1–3): 3-13. 10.1016/j.pmpp.2006.06.004.
Article
Google Scholar
Riggleman RC, Fristensky B, Hadwiger LA: The disease resistance response in pea is associated with increased levels of specific mRNAs. Plant Mol Biol. 1985, 4 (Suppl 2–3): 81-86. 10.1007/BF02418753.
Article
PubMed
Google Scholar
Biesiadka J, Bujacz G, Sikorski MM, Jaskolski M: Crystal Structures of Two Homologous Pathogenesis-related Proteins from Yellow Lupine. J Mol Biol. 2002, 319 (Suppl 5): 1223-1234. 10.1016/S0022-2836(02)00385-6.
Article
PubMed
Google Scholar
Moiseyev GP, Beintema JJ, Fedoreyeva LI, Yakovlev GI: High sequence similarity between a ribonuclease from ginsgeng calluses and fungus- elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases. Planta. 1994, 193 (3): 470-472. 10.1007/BF00201828.
Article
PubMed
Google Scholar
Srivastava S, Emery RJN, Kurepin LV, Reid DM, Fristensky B, Kav NNV: Pea PR 10.1 is a ribonuclease and its transgenic expression elevates cytokinin levels. Plant Growth Reg. 2006, 49 (Suppl 1): 17-25. 10.1007/s10725-006-0022-6.
Article
Google Scholar
Srivastava S, Emery RJN, Rahman MH, Kav NNV: A crucial role for cytokinins in pea ABR17-mediated enhanced germination and early seedling growth of Arabidopsis thaliana under saline and low temperature stresses. J Plant Growth Reg. 2007, 26 (Suppl 1): 26-37. 10.1007/s00344-006-0046-1.
Article
Google Scholar
Fujimoto Y, Nagata R, Fukasawa H, Yano K, Azuma M, Iida A, Sugimoto S, Shudo K, Hashimoto Y: Purification and cDNA cloning of cytokinin-specific binding protein from mung bean (Vigna radiata). Eur J Biochem. 1998, 258 (Suppl 2): 794-802. 10.1046/j.1432-1327.1998.2580794.x.
Article
PubMed
Google Scholar
Mogensen JE, Wimmer R, Larsen JN, Spangfort MD: The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J Biol Chem. 2002, 277 (26): 23684-23692. 10.1074/jbc.M202065200.
Article
PubMed
Google Scholar
Markovic-Housely Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breitender H: Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol. 2003, 325 (Suppl 1): 123-133. 10.1016/S0022-2836(02)01197-X.
Article
Google Scholar
Pasternak O, Biesiadka J, Dolot R, Handschuh L, Bujacz G, Sikorski MM, Jaskolski M: Structure of a yellow lupin pathogenesis-related PR-10 protein belonging to a novel subclass. Acta Crystallogr D Biol Crystallogr. 2005, 61 (Pt 1): 99-107.
Article
PubMed
Google Scholar
Iturriaga EA, Leech MJ, Barratt DHP, Wang TL: Two ABA responsive proteins from pea (Pisum sativum L.) are closely related to intracellular pathogenesis-related proteins. Plant Mol Biol. 1994, 24 (Suppl 1): 235-240. 10.1007/BF00040591.
Article
PubMed
Google Scholar
Skriver K, Mundy J: Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990, 2 (Suppl 6): 503-512. 10.1105/tpc.2.6.503.
Article
PubMed
PubMed Central
Google Scholar
Goday A, Jensen AB, Culianez-Macia FA, Mar AM, Figueras M, Serratosa J, Torrent M, Pages M: The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell. 1994, 6 (Suppl 3): 351-360. 10.1105/tpc.6.3.351.
Article
PubMed
PubMed Central
Google Scholar
Fristensky B, Horovitz D, Hadwiger LA: cDNA sequences for pea disease resistance response genes. Plant Mol Biol. 1988, 11 (Suppl 5): 713-715. 10.1007/BF00017470.
Article
PubMed
Google Scholar
Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenbach M: The gene coding for the major birch pollen allergen, Betv1, is highly homologous to a pea disease resistance response gene. EMBO J. 1989, 8 (7): 1935-1938.
PubMed
PubMed Central
Google Scholar
Srivastava S, Fristensky B, Kav NNV: Constitutive expression of a PR 10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol. 2004, 45 (Suppl 9): 1320-1324. 10.1093/pcp/pch137.
Article
PubMed
Google Scholar
Srivastava S, Rahman MH, Shah S, Kav NNV: Constitutive expression of the pea ABA-responsive 17 (ABR17) cDNA confers multiple stress tolerance in Arabidopsis thaliana. Plant Biotechnol J. 2006, 4 (5): 529-549.
PubMed
Google Scholar
Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A: Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J. 2000, 24 (Suppl 1): 103-111. 10.1046/j.1365-313x.2000.00859.x.
Article
PubMed
Google Scholar
Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H: Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 2006, 45 (6): 1028-1036.
Article
PubMed
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum. 1962, 15 (Suppl 3): 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Article
Google Scholar
Bentsink L, Koorneef M: Seed dormancy and germination. The Arabidopsis Book. Edited by: Somerville CR, Meyerowitz EM. 2002, Roxkville, MD: Amercan Society of Plant Biologists, [http://www.aspb.org/publications/arabidopsis/]
Google Scholar
Miller CO: Similarity of some kinetin and red light effects. Plant Physiol. 1956, 31 (4): 318-319.
Article
PubMed
PubMed Central
Google Scholar
Miller CO: The relationship of the kinetin and red light promotions of lettuce seed germination. Plant Physiol. 1958, 33 (2): 115-117.
Article
PubMed
PubMed Central
Google Scholar
Skinner CG, Talbert FD, Shive W: Effect of 6-(substituted) purines and gibberellin on the rate of seed germination. Plant Physiol. 1958, 33 (3): 190-194.
Article
PubMed
PubMed Central
Google Scholar
Khan AA, Tolbert NE: Reversal of inhibitors of seed germination by red light plus kinetin. Physiol Plantarum. 1965, 18 (Suppl 1): 41-43. 10.1111/j.1399-3054.1965.tb06866.x.
Article
Google Scholar
Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F: Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989, 58 (Suppl 5): 991-999. 10.1016/0092-8674(89)90950-1.
Article
PubMed
Google Scholar
Chory J, Reinecke D, Sim S, Washburn T, Brenner M: A role cytokinins in de-etiolation in Arabidopsis. Plant Physiol. 1994, 104 (2): 339-347.
PubMed
PubMed Central
Google Scholar
Pietraface WJ, Blaydes DF: Far-red light and coumarin induced changes in 9-methyl-N6-benzyladenine metabolism by Lactuca sativa achenes. Plant Cell Physiol. 1982, 23 (Suppl 8): 1475-1477. [http://pcp.oxfordjournals.org/cgi/content/abstract/23/8/1475]
Google Scholar
Chaudhury AM, Letham S, Craig S, Dennis ES: amp1 – a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J. 1993, 4 (Suppl 6): 907-916. 10.1046/j.1365-313X.1993.04060907.x.
Article
Google Scholar
Huffaker A, Pearce G, Ryan AC: An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA. 2006, 103 (Suppl 26): 10098-10103. 10.1073/pnas.0603727103.
Article
PubMed
PubMed Central
Google Scholar
Tena G, Asai T, Chiu W, Sheen J: Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol. 2001, 4 (Suppl 5): 392-400. 10.1016/S1369-5266(00)00191-6.
Article
PubMed
Google Scholar
Kim YC, Zhang S: Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J. 2004, 38 (Suppl 10): 142-151. 10.1111/j.1365-313X.2004.02033.x.
Article
PubMed
Google Scholar
McQueen-Mason S, Cosgrove DJ: Expansin mode of action on cell walls: analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 1995, 107 (1): 87-100.
PubMed
PubMed Central
Google Scholar
Reinhardt D, Wittwer F, Mandel T, Kuhlemeier C: Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell. 1998, 10 (Suppl 9): 1427-1437. 10.1105/tpc.10.9.1427.
Article
PubMed
PubMed Central
Google Scholar
Reidy B, McQueen-Mason S, Nösberger J, Fleming A: Differential expression of α- and β-expansin genes in the elongating leaf of Festuca pratensis. J Plant Mol Biol. 2001, 46 (Suppl 4): 491-504. 10.1023/A:1010621417854.
Article
Google Scholar
Cho H-T, Cosgrove JD: Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002, 14 (Suppl 12): 3237-3253. 10.1105/tpc.006437.
Article
PubMed
PubMed Central
Google Scholar
Cho H-T, Cosgrove DJ: Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2000, 97 (Suppl 17): 9783-9788. 10.1073/pnas.160276997.
Article
PubMed
PubMed Central
Google Scholar
Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A: Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci. 2001, 98 (Suppl 20): 11812-11817. 10.1073/pnas.191380498.
Article
PubMed
PubMed Central
Google Scholar
Sachetto-Martins G, Franco LO, Oliveira de DE: Plant glycine-rich proteins: a family or just proteins with a common motif?. Biochim Biophys Acta. 2000, 1492 (1): 1-14.
Article
PubMed
Google Scholar
Cassab GI: Plant cell wall proteins. Ann Rev Plant Physiol Plant Mol Biol. 1998, 49: 281-309. 10.1146/annurev.arplant.49.1.281.
Article
Google Scholar
Xu D, Lei M, Wu R: Expression of the rice Osgrp1 promoter- Gus reporter gene is specifically associated with cell elongation/expansion and differentiation. Plant Molecular Biology. 1995, 28 (Suppl 3): 455-471. 10.1007/BF00020394.
Article
PubMed
Google Scholar
Carpenter CD, Kreps JA, Simon AE: Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 1994, 104 (3): 1015-25. 10.1104/pp.104.3.1015. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=160700]
Article
PubMed
PubMed Central
Google Scholar
Showalter AM, Zhou J, Rumeau D, Worst SG, Varner JE: Tomato extensin and extensin-like cDNAs: Structure and expression in response to wounding. Plant Mol Biol. 1991, 16 (Suppl 4): 547-565. 10.1007/BF00023421.
Article
PubMed
Google Scholar
Chen J, Varner JE: Isolation and characterization of cDNA clones for carrot extensin and proline-rich 33-kDa proteins. Proc Natl Acad Sci USA. 1985, 82 (Suppl 13): 4399-4403. 10.1073/pnas.82.13.4399.
Article
PubMed
PubMed Central
Google Scholar
Bernhardt C, Tierney ML: Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol. 2000, 122 (3): 705-714. 10.1104/pp.122.3.705.
Article
PubMed
PubMed Central
Google Scholar
Goujon T, Minic Z, Amrani AE, Lerouxel O, Aletti E, Lapierre C, Joseleau J-P, Jouanin L: AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J. 2003, 33 (Suppl 4): 677-690. 10.1046/j.1365-313X.2003.01654.x.
Article
PubMed
Google Scholar
Vissenberg K, Fry CS, Pauly M, Höfte H, Verbelen J-P: XTH acts at the microfibril-matrix interface during cell elongation. J Exp Bot. 2005, 56 (Suppl 412): 673-683. 10.1093/jxb/eri048.
Article
PubMed
Google Scholar
Yamakawa S, Sakuta1 C, Matsubayashi Y, Sakagami Y, Kamada H, Satoh S: The promotive effects of a peptidyl plant growth factor, phytosulfokine-α, on the formation of adventitious roots and expression of a gene for a root-specific cystatin in cucumber hypocotyls. J Plant Res. 1998, 111 (Suppl 3): 453-458. 10.1007/BF02507810.
Article
Google Scholar
Matsubayashi Y, Takagi L, Omura N, Morita A, Sakagami Y: The endogenous sulfated pentapeptide phytosulfokine-α stimulates tracheary element differentiation of isolated mesophyll cells of Zinnia. Plant Physiol. 1999, 120 (Suppl 4): 1043-1048. 10.1104/pp.120.4.1043.
Article
PubMed
PubMed Central
Google Scholar
Igasaki T, Akashi N, Ujino-Ihara T, Matsubayashi Y, Sakagami Y, Shinohara K: Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol. 2003, 44 (Suppl 5): 1412-1416. 10.1093/pcp/pcg161.
Article
PubMed
Google Scholar
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R: The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996, 85 (Suppl 2): 159-170. 10.1016/S0092-8674(00)81093-4.
Article
PubMed
Google Scholar
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M: Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell. 1997, 9 (Suppl 6): 841-857. 10.1105/tpc.9.6.841.
Article
PubMed
PubMed Central
Google Scholar
Sablowski RW, Meyerowitz EM: A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell. 1998, 92 (Suppl 1): 93-103. 10.1016/S0092-8674(00)80902-2.
Article
PubMed
Google Scholar
Xing S, Rosso GM, Zachgo S: ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development. 2005, 132 (Suppl 7): 1555-1565. 10.1242/dev.01725.
Article
PubMed
Google Scholar
Brenner GW, Romanov AG, Köllmer I, Bürkle L, Schmülling T: Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 2005, 44 (Suppl 2): 314-333. 10.1111/j.1365-313X.2005.02530.x.
Article
PubMed
Google Scholar
Hoth S, Ikeda Y, Morgante M, Wang X, Zuo J, Hanafey MK, Gaasterland T, Tingey SV, Chua NH: Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana. FEBS Lett. 2003, 554 (3): 373-380. 10.1016/S0014-5793(03)01194-3.
Article
PubMed
Google Scholar
Rashotte AM, Carson DBS, To PCJ, Kieber JJ: Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003, 132 (Suppl 4): 1998-2011. 10.1104/pp.103.021436.
Article
PubMed
PubMed Central
Google Scholar
Jiang Y, Deyholos MK: Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006, 6 (25):
Ma SS, Gong QQ, Bohnert HJ: Dissecting salt stress pathways. J Exp Bot. 2006, 57 (Suppl 5): 1097-1107. 10.1093/jxb/erj098.
Article
PubMed
Google Scholar
Hughes MA, Dunn MA, Pearce RS, White AJ, Zhang L: An abscisic-acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant Cell Environ. 1992, 15 (Suppl 7): 861-865. 10.1111/j.1365-3040.1992.tb02155.x.
Article
Google Scholar
White AJ, Dunn MA, Brown K, Hughes MA: Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot. 1994, 45 (Suppl 12): 1885-1892. 10.1093/jxb/45.12.1885.
Article
Google Scholar
Torres-Schumann S, Godoy JA, Pintor-Toro JA: A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol. 1992, 18 (Suppl 4): 749-757. 10.1007/BF00020016.
Article
PubMed
Google Scholar
Riechmann J, Heard G, Martin L, Reuber CZ, Jiang J, Keddie L, Adam O, Pineda OJ, Ratcliffe RR, Samaha R, Creelman M, Pilgrim P, Broun JZ, Zhang D, Ghandehari BK, Sherman G, Yu L: Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science. 2000, 290 (Suppl 5499): 2105-2110. 10.1126/science.290.5499.2105.
Article
PubMed
Google Scholar
Ohmetakagi M, Shinshi H: Ethylene inducible DNAbinding proteins that interact with an ethylene-responsive element. Plant Cell. 1995, 7 (Suppl 1): 173-182. 10.1105/tpc.7.2.173.
Article
Google Scholar
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998, 16 (Suppl 4): 433-442. 10.1046/j.1365-313x.1998.00310.x.
Article
PubMed
Google Scholar
Kizis D, Lumbreras V, Pages M: Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 2001, 498 (Suppl 2–3): 187-189. 10.1016/S0014-5793(01)02460-7.
Article
PubMed
Google Scholar
Ma S, Bohnert H: Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol. 2007, 8 (4): R49-10.1186/gb-2007-8-4-r49.
Article
PubMed
PubMed Central
Google Scholar
Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P: Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol. 2004, 55 (Suppl 4): 607-618. 10.1007/s11103-004-1521-3.
Article
PubMed
Google Scholar
Shukla RK, Raha S, Tripathi V, Chattopadhyay D: Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol. 2006, 142 (Suppl 1): 113-123. 10.1104/pp.106.081752.
Article
PubMed
PubMed Central
Google Scholar
Xie Q, Frugis G, Colgan D, Chua N-H: Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Develop. 2000, 14 (Suppl 23): 3024-3036. 10.1101/gad.852200.
Article
PubMed
PubMed Central
Google Scholar
Olsen AN, Ernst HA, Leggio LL, Skriver K: NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005, 10 (Suppl 2): 79-87. 10.1016/j.tplants.2004.12.010.
Article
PubMed
Google Scholar
Greve K, La Cour T, Jensen MK, Poulsen FM, Skriver K: Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/1/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem J. 2003, 371 (Suppl 1): 97-108. 10.1042/BJ20021123.
Article
PubMed
PubMed Central
Google Scholar
Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K: A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 2004, 39 (Suppl 6): 863-876. 10.1111/j.1365-313X.2004.02171.x.
Article
PubMed
Google Scholar
Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D: Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol. 2003, 53 (Suppl 3): 383-97. 10.1023/B:PLAN.0000006944.61384.11.
Article
PubMed
Google Scholar
Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, et al: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004, 16 (Suppl 11): 2481-98. 10.1105/tpc.104.022699.
Article
PubMed
PubMed Central
Google Scholar
He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY: AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 2005, 44 (Suppl 6): 903-916. 10.1111/j.1365-313X.2005.02575.x.
Article
PubMed
Google Scholar
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA. 2006, 103 (Suppl 35): 12987-12992. 10.1073/pnas.0604882103.
Article
PubMed
PubMed Central
Google Scholar
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31 (Suppl 3): 279-292. 10.1046/j.1365-313X.2002.01359.x.
Article
PubMed
Google Scholar
Silva J, Arrowsmith D, Hellyer A, Whiteman S, Robinson S: Xyloglucan endotransglycosylase and plant growth. J Exp Bot. 1994, 45 (Suppl 280): 1693-1701.
Google Scholar
Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA: Characterization of osmotin. A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol. 1987, 85 (2): 529-536.
Article
PubMed
PubMed Central
Google Scholar
Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K: An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol. 2000, 41 (Suppl 7): 898-903. 10.1093/pcp/pcd010.
Article
PubMed
Google Scholar
Abede T, Guenzi AC, Martin B, Cushman JC: Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 2003, 131 (4): 1748-1755. 10.1104/pp.102.003616.
Article
Google Scholar
King GJ, Ce Hausey JR, Turner VA: A protein induced by NaCl in suspension cultures of Nicotiana tabacum accumulates in whole plant roots. Plant Mol Biol. 1986, 7 (Suppl 6): 441-449. 10.1007/BF00020328.
Article
PubMed
Google Scholar
Klein M, Papenbrock J: Sulfotransfersases and their role in glucosinolate biosynthesis. Sulfur Assimilation and Abiotic Stress in Plants. Edited by: Khan NA, Umar S, Singh. 2008, 189-166. [http://www.springerlink.com/content/u70054228570462p/]
Google Scholar
Coca MA, Almoguera C, Thomas TL, Jordano J: Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol Biol. 1996, 31 (Suppl 4): 863-876. 10.1007/BF00019473.
Article
PubMed
Google Scholar
Campalans A, Pages M, Messeguer R: Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol. 2001, 21 (10): 633-643.
Article
PubMed
Google Scholar
Kuznetsov VV, Rakutin VY, Borisova NN, Rotschupkin BV: Why does heat shock increase salt resistance in cotton plants?. Plant Physiol Biochem. 1993, 31 (Suppl 2): 181-188.
Google Scholar
Sun W, Bernard C, Cotte van de B, van Montagu M, Verbruggen N: At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 2001, 27 (Suppl 5): 407-415. 10.1046/j.1365-313X.2001.01107.x.
Article
PubMed
Google Scholar
Koike M, Okamoto T, Tsuda S, Imai R: A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem Biophys Res Commun. 2002, 298 (Suppl 1): 46-53. 10.1016/S0006-291X(02)02391-4.
Article
PubMed
Google Scholar
Spelbrink GR, Dilmac N, Allen A, Smith JT, Shah MD, Hockerman HG: Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol. 2004, 135 (Suppl 4): 2055-2067. 10.1104/pp.104.040873.
Article
PubMed
PubMed Central
Google Scholar
Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 2004, 135 (Suppl 3): 1697-1709. 10.1104/pp.104.039909.
Article
PubMed
PubMed Central
Google Scholar
Prinsen E, Kaminek M, van Onckelen HA: Cytokininbiosynthesis: a black box?. J Plant Growth Reg. 1997, 23 (Suppl 1–2): 3-15. [http://www.springerlink.com/content/mw363804rl2p3633/]
Article
Google Scholar
Kirk JTO: Studies on the dependence of chlorophyll synthesis on protein synthesis in Euglena gracilis together with a nomogram for determination of chlorophyll concentration. Planta. 1968, 78 (Suppl 2): 200-202. [http://www.springerlink.com/content/k71714x102743547/]
Google Scholar
Kirk JT, Allen RL: Dependence of pigment synthesis on protein synthesis. Biochem Biophys Res Commun. 1965, 21 (Suppl 6): 523-530. 10.1016/0006-291X(65)90516-4.
Article
PubMed
Google Scholar
Martin-Magniette M, Aubert J, Cabannes E, Daudin J: Evaluation of gene-specific dye bias in cDNA microarray experiments. Bioinform. 2005, 21 (Suppl 9): 1995-2000. 10.1093/bioinformatics/bti302.
Article
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: A free, open-source system for microarray data management and analysis. Biotechniques. 2003, 34 (2): 374-378.
PubMed
Google Scholar
Yang H, Matsubayashi Y, Nakamura K, Sakagami Y: Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol. 2001, 127 (Suppl 3): 842-851. 10.1104/pp.127.3.842. [http://www.plantphysiol.org/cgi/content/abstract/127/3/842]
Article
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real time quantitative PCR and the 2ΔΔCt method. Methods. 2001, 25 (Suppl 4): 402-408. 10.1006/meth.2001.1262.
Article
PubMed
Google Scholar