Dai ZW, Leon C, Feil R, Lunn JE, Delrot S, Gomes E: Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. J Exp Bot. 2013, 64: 1345-1355. 10.1093/jxb/ers396.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H: Biochemical changes throughout Grape Berry development and fruit and wine quality. Food. 2007, 1: 1-22.
Google Scholar
Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellin P, Oliveros JC, Martinez-Zapater JM: Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS One. 2012, 7: e39547-10.1371/journal.pone.0039547.
Article
PubMed Central
CAS
PubMed
Google Scholar
Teixeira A, Eiras-Dias J, Castellarin SD, Geros H: Berry phenolics of grapevine under challenging environments. Int J Mol Sci. 2013, 14: 18711-18739. 10.3390/ijms140918711.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez A, Alquezar B, Pena L: Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 2013, 197: 36-48. 10.1111/j.1469-8137.2012.04382.x.
Article
CAS
PubMed
Google Scholar
Gil M, Bottini R, Berli F, Pontin M, Silva MF, Piccoli P: Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry. 2013, 96: 148-157.
Article
CAS
PubMed
Google Scholar
Davies C, Böttcher C: Hormonal Control of Grape Berry Ripening. Grapevine Molecular Physiology & Biotechnology. Edited by: Roubelakis-Angelakis KA. 2009, Netherlands: Springer, 229-261.
Chapter
Google Scholar
Kliewer WM: Effect of temperature on the composition of grapes grown under field and controlled conditions. Proc Am Soc Horti Cult Sci. 1968, 93: 797-806.
CAS
Google Scholar
Tarara JM, Lee J, Spayd SE, Scagel CF: Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Vitic. 2008, 59: 235-247.
CAS
Google Scholar
Berli F, D’Angelo J, Cavagnaro B, Bottini R, Wuilloud R, Silva MF: Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. J Agric Food Chem. 2008, 56: 2892-2898. 10.1021/jf073421+.
Article
CAS
PubMed
Google Scholar
Spayd SE, Tarara JM, Mee DL, Ferguson JC: Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot Berries. Am J Enol Vitic. 2002, 53: 171-182.
CAS
Google Scholar
Skinkis PA, Bordelon BP, Butz EM: Effects of sunlight exposure on berry and wine monoterpenes and sensory characteristics of Traminette. Am J Enol Vitic. 2010, 61: 147-156.
CAS
Google Scholar
Cortell JM, Kennedy JA: Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) pinot noir fruit and extraction in a model system. J Agric Food Chem. 2006, 54: 8510-8520. 10.1021/jf0616560.
Article
CAS
PubMed
Google Scholar
Cohen SD, Tarara JM, Kennedy JA: Diurnal temperature range compression Hastens Berry development and modifies flavonoid partitioning in Grapes. Am J Enol Vitic. 2011, 63: 112-120.
Article
Google Scholar
Kliewer WM, Torres RE: Effect of Controlled Day and Night Temperatures on Grape Coloration. Am J Enol Vitic. 1972, 23: 71-77.
Google Scholar
Azuma A, Ito A, Moriguchi T, Yakushiji H, Kobayashi S: Light emitting diode irradiation at night accelerates anthocyanin accumulation in grape skin. Acta Horticult. 2012, 956: 341-348.
Article
Google Scholar
Carbonell-Bejerano P, Santa Maria E, Torres-Perez R, Royo C, Lijavetzky D, Bravo G, Aguirreolea J, Sanchez-Diaz M, Antolin MC, Martinez-Zapater JM: Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Plant Cell Physiol. 2013, 54: 1200-1216. 10.1093/pcp/pct071.
Article
CAS
PubMed
Google Scholar
Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K: Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot. 2007, 58: 1935-1945. 10.1093/jxb/erm055.
Article
CAS
PubMed
Google Scholar
Matus JT, Loyola R, Vega A, Pena-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA: Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot. 2009, 60: 853-867. 10.1093/jxb/ern336.
Article
PubMed Central
CAS
PubMed
Google Scholar
Azuma A, Yakushiji H, Koshita Y, Kobayashi S: Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta. 2012, 236: 1067-1080. 10.1007/s00425-012-1650-x.
Article
CAS
PubMed
Google Scholar
Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N: Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry. 2012, 78: 54-64.
Article
CAS
PubMed
Google Scholar
Harmer SL: The circadian system in higher plants. Annu Rev Plant Biol. 2009, 60: 357-377. 10.1146/annurev.arplant.043008.092054.
Article
CAS
PubMed
Google Scholar
Filichkin SA, Breton G, Priest HD, Dharmawardhana P, Jaiswal P, Fox SE, Michael TP, Chory J, Kay SA, Mockler TC: Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. PLoS One. 2011, 6: e16907-10.1371/journal.pone.0016907.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang W, Perez-Garcia P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P: Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science. 2012, 336: 75-79. 10.1126/science.1219075.
Article
CAS
PubMed
Google Scholar
Yanovsky MJ, Kay SA: Molecular basis of seasonal time measurement in Arabidopsis. Nature. 2002, 419: 308-312. 10.1038/nature00996.
Article
CAS
PubMed
Google Scholar
Salome PA, Weigel D, McClung CR: The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell. 2010, 22: 3650-3661. 10.1105/tpc.110.079087.
Article
PubMed Central
CAS
PubMed
Google Scholar
McWatters HG, Devlin PF: Timing in plants–a rhythmic arrangement. FEBS Lett. 2011, 585: 1474-1484. 10.1016/j.febslet.2011.03.051.
Article
CAS
PubMed
Google Scholar
Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AA: Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ. 2007, 30: 333-349. 10.1111/j.1365-3040.2006.01627.x.
Article
CAS
PubMed
Google Scholar
Eriksson ME, Webb AA: Plant cell responses to cold are all about timing. Curr Opin Plant Biol. 2011, 14: 731-737. 10.1016/j.pbi.2011.08.005.
Article
PubMed
Google Scholar
Piechulla B, Gruissem W: Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. EMBO J. 1987, 6: 3593-3599.
PubMed Central
CAS
PubMed
Google Scholar
Rodríguez-Nogales JM, Fernández-Fernández E, Vila-Crespo J: Characterisation and classification of Spanish Verdejo young white wines by volatile and sensory analysis with chemometric tools. J Sci Food Agric. 2009, 89: 1927-1935. 10.1002/jsfa.3674.
Article
Google Scholar
Campo E, Do BV, Ferreira V, Valentin D: Aroma properties of young Spanish monovarietal white wines: a study using sorting task, list of terms and frequency of citation. Aust J Grape Wine Res. 2008, 14: 104-115. 10.1111/j.1755-0238.2008.00010.x.
Article
Google Scholar
Cutanda-Perez MC, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregrosa L: Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol. 2009, 69: 633-648. 10.1007/s11103-008-9446-x.
Article
CAS
PubMed
Google Scholar
Walker AR, Lee E, Bogs J, McDavid DA, Thomas MR, Robinson SP: White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 2007, 49: 772-785. 10.1111/j.1365-313X.2006.02997.x.
Article
CAS
PubMed
Google Scholar
Kobayashi S, Ishimaru M, Hiraoka K, Honda C: Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta. 2002, 215: 924-933. 10.1007/s00425-002-0830-5.
Article
CAS
PubMed
Google Scholar
Boss PK, Thomas MR: Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature. 2002, 416: 847-850. 10.1038/416847a.
Article
CAS
PubMed
Google Scholar
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J: The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol. 2009, 151: 1513-1530. 10.1104/pp.109.142059.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takata N, Saito S, Tanaka Saito C, Nanjo T, Shinohara K, Uemura M: Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2. New Phytol. 2009, 181: 808-819. 10.1111/j.1469-8137.2008.02714.x.
Article
CAS
PubMed
Google Scholar
Rawat R, Schwartz J, Jones MA, Sairanen I, Cheng Y, Andersson CR, Zhao Y, Ljung K, Harmer SL: REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci USA. 2009, 106: 16883-16888. 10.1073/pnas.0813035106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dal Santo S, Tornielli GB, Zenoni S, Fasoli M, Farina L, Anesi A, Guzzo F, Delledonne M, Pezzotti M: The plasticity of the grapevine berry transcriptome. Genome Biol. 2013, 14: r54-10.1186/gb-2013-14-6-r54.
Article
PubMed Central
PubMed
Google Scholar
Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000, 290: 2110-2113. 10.1126/science.290.5499.2110.
Article
CAS
PubMed
Google Scholar
Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR: Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics. 2007, 8: 429-10.1186/1471-2164-8-429.
Article
PubMed Central
PubMed
Google Scholar
Guillaumie S, Fouquet R, Kappel C, Camps C, Terrier N, Moncomble D, Dunlevy JD, Davies C, Boss PK, Delrot S: Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol. 2011, 11: 165-10.1186/1471-2229-11-165.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li QB, Haskell D, Zhang C, Sung DY, Guy C: Diurnal regulation of Hsp70s in leaf tissue. Plant J. 2000, 21: 373-378. 10.1046/j.1365-313x.2000.00673.x.
Article
PubMed
Google Scholar
Wang W, Barnaby JY, Tada Y, Li H, Tor M, Caldelari D, Lee DU, Fu XD, Dong X: Timing of plant immune responses by a central circadian regulator. Nature. 2011, 470: 110-114. 10.1038/nature09766.
Article
CAS
PubMed
Google Scholar
Hua J: Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol. 2013, 16: 406-413. 10.1016/j.pbi.2013.06.017.
Article
CAS
PubMed
Google Scholar
Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE: Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 1999, 18: 4689-4699. 10.1093/emboj/18.17.4689.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet MF, Regad F, Cailleteau B, Hamdi S, Lauvergeat V: Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot. 2007, 58: 1999-2010. 10.1093/jxb/erm062.
Article
CAS
PubMed
Google Scholar
Holl J, Vannozzi A, Czemmel S, D'Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J: The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell. 2013, 25: 4135-4149. 10.1105/tpc.113.117127.
Article
PubMed Central
PubMed
Google Scholar
Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J: Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J. 2003, 22: 633-640. 10.1093/emboj/cdg74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, Singh J, Li D, Qu F: Temperature-dependent survival of Turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. J Virol. 2012, 86: 6847-6854. 10.1128/JVI.00497-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ledger S, Strayer C, Ashton F, Kay SA, Putterill J: Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J. 2001, 26: 15-22. 10.1046/j.1365-313x.2001.01003.x.
Article
CAS
PubMed
Google Scholar
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA: Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science. 2001, 293: 880-883. 10.1126/science.1061320.
Article
CAS
PubMed
Google Scholar
Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre IA, Coupland G: LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell. 2002, 2: 629-641. 10.1016/S1534-5807(02)00170-3.
Article
CAS
PubMed
Google Scholar
Alabadi D, Yanovsky MJ, Mas P, Harmer SL, Kay SA: Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol. 2002, 12: 757-761. 10.1016/S0960-9822(02)00815-1.
Article
CAS
PubMed
Google Scholar
Harmer SL, Kay SA: Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell. 2005, 17: 1926-1940. 10.1105/tpc.105.033035.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gong W, He K, Covington M, Dinesh-Kumar SP, Snyder M, Harmer SL, Zhu YX, Deng XW: The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant. 2008, 1: 27-41. 10.1093/mp/ssm009.
Article
PubMed Central
CAS
PubMed
Google Scholar
James AB, Monreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, Nimmo HG: The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science. 2008, 322: 1832-1835. 10.1126/science.1161403.
Article
CAS
PubMed
Google Scholar
Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J: A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol. 2008, 6: e225-10.1371/journal.pbio.0060225.
Article
PubMed Central
PubMed
Google Scholar
Bottcher C, Burbidge CA, Boss PK, Davies C: Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biol. 2013, 13: 222-10.1186/1471-2229-13-222.
Article
PubMed Central
PubMed
Google Scholar
Arana MV, Marin-de la Rosa N, Maloof JN, Blazquez MA, Alabadi D: Circadian oscillation of gibberellin signaling in Arabidopsis. Proc Natl Acad Sci USA. 2011, 108: 9292-9297. 10.1073/pnas.1101050108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kobayashi S, Goto-Yamamoto N, Hirochika H: Retrotransposon-induced mutations in grape skin color. Science. 2004, 304: 982-10.1126/science.1095011.
Article
PubMed
Google Scholar
Lijavetzky D, Ruiz-Garcia L, Cabezas JA, De Andres MT, Bravo G, Ibanez A, Carreno J, Cabello F, Ibanez J, Martinez-Zapater JM: Molecular genetics of berry colour variation in table grape. Mol Genet Genomics. 2006, 276: 427-435. 10.1007/s00438-006-0149-1.
Article
CAS
PubMed
Google Scholar
This P, Lacombe T, Cadle-Davidson M, Owens CL: Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet. 2007, 114: 723-730. 10.1007/s00122-006-0472-2.
Article
PubMed
Google Scholar
Castellarin SD, Di Gaspero G: Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 2007, 7: 46-10.1186/1471-2229-7-46.
Article
PubMed Central
PubMed
Google Scholar
Boss PK, Davies C, Robinson SP: Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol. 1996, 32: 565-569. 10.1007/BF00019111.
Article
CAS
PubMed
Google Scholar
Osterlund MT, Hardtke CS, Wei N, Deng XW: Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000, 405: 462-466. 10.1038/35013076.
Article
CAS
PubMed
Google Scholar
Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley EJ, Schafer E, Nagy F: Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA. 2004, 101: 1397-1402. 10.1073/pnas.0308044100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW: Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell. 2007, 19: 731-749. 10.1105/tpc.106.047688.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ruffner HP, Hawker JS, Hale CR: Temperature and enzymic control of malate metabolism in berries of Vitis vinifera. Phytochemistry. 1976, 15: 1877-1880. 10.1016/S0031-9422(00)88835-4.
Article
CAS
Google Scholar
Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE: Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol. 2005, 137: 901-910. 10.1104/pp.104.058453.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stein U, Blaich R, Wind R: A novel method for non-destructive determination of the sugar content and for classification of grape berries. Vitis. 1983, 22: 15-22.
CAS
Google Scholar
Fournand D, Vicens A, Sidhoum L, Souquet JM, Moutounet M, Cheynier V: Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J Agric Food Chem. 2006, 54: 7331-7338. 10.1021/jf061467h.
Article
CAS
PubMed
Google Scholar
Rolle L, Segade SR, Torchio F, Giacosa S, Cagnasso E, Marengo F, Gerbi V: Influence of grape density and harvest date on changes in phenolic composition, phenol extractability indices, and instrumental texture properties during ripening. J Agric Food Chem. 2011, 59: 8796-8805. 10.1021/jf201318x.
Article
CAS
PubMed
Google Scholar
Reid KE, Olsson N, Schlosser J, Peng F, Lund ST: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006, 6: 27-10.1186/1471-2229-6-27.
Article
PubMed Central
PubMed
Google Scholar
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003, 31: e15-10.1093/nar/gng015.
Article
PubMed Central
PubMed
Google Scholar
Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, García F, Marbà M, Montaner D, Dopazo J: Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 2010, 38: W210-W213. 10.1093/nar/gkq388.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3 (1): 1-25. Article3
Google Scholar
Conesa A, Nueda MJ, Ferrer A, Talon M: maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006, 22: 1096-1102. 10.1093/bioinformatics/btl056.
Article
CAS
PubMed
Google Scholar
Toronen P, Kolehmainen M, Wong G, Castren E: Analysis of gene expression data using self-organizing maps. FEBS Lett. 1999, 451: 142-146. 10.1016/S0014-5793(99)00524-4.
Article
CAS
PubMed
Google Scholar
Tibshirani R, Walther G, Hastie T: Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc B. 2001, 63: 411-423. 10.1111/1467-9868.00293.
Article
Google Scholar
Grimplet J, Van Hemert J, Carbonell-Bejerano P, Diaz-Riquelme J, Dickerson J, Fennell A, Pezzotti M, Martinez-Zapater JM: Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes. 2012, 5: 213-10.1186/1756-0500-5-213.
Article
PubMed Central
CAS
PubMed
Google Scholar
Al-Shahrour F, Diaz-Uriarte R, Dopazo J: FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics. 2004, 20: 578-580. 10.1093/bioinformatics/btg455.
Article
CAS
PubMed
Google Scholar
VENNY. An interactive tool for comparing lists with Venn Diagrams. [http://bioinfogp.cnb.csic.es/tools/venny/index.html]
Nagel DH, Kay SA: Complexity in the wiring and regulation of plant circadian networks. Curr Biol. 2012, 22: R648-R657. 10.1016/j.cub.2012.07.025.
Article
PubMed Central
CAS
PubMed
Google Scholar