Kudla J, Batistic O, Hashimoto K: Calcium signals: the lead currency of plant information processing. Plant Cell. 2010, 22: 541-563. 10.1105/tpc.109.072686.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dodd AN, Kudla J, Sanders D: The language of calcium signaling. Annu Rev Plant Physiol Plant Mol Biol. 2010, 61: 593-620.
Article
CAS
Google Scholar
McAinsh MR, Pittman JK: Shaping the calcium signature. New Phytol. 2009, 181: 275-294. 10.1111/j.1469-8137.2008.02682.x.
Article
PubMed
CAS
Google Scholar
McAinsh MR, Webb AAR, Taylor JE, Hetherington AM: Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell. 1995, 7: 1207-1219.
Article
PubMed
CAS
PubMed Central
Google Scholar
Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI: A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature. 2001, 411: 1053-1057. 10.1038/35082575.
Article
PubMed
CAS
Google Scholar
Hepler PK, Lovy-Wheeler A, McKenna ST, Kunkel JG: Ions and pollen tube growth. Plant Cell Mon. 2006, 3: 47-69. 10.1007/7089_043.
Article
CAS
Google Scholar
Whalley HJ, Knight MR: Calcium signatures are decoded by plants to give specific gene responses. New Phytol. 2013, 197: 690-693. 10.1111/nph.12087.
Article
PubMed
CAS
Google Scholar
Meyer T, Stryer L: Calcium spiking. Ann Rev Biophys Bio. 1991, 20: 153-174. 10.1146/annurev.bb.20.060191.001101.
Article
CAS
Google Scholar
Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED: Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci USA. 2008, 105: 9823-9828. 10.1073/pnas.0803499105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DJ, Bonfante P: Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol. 2011, 189: 347-355. 10.1111/j.1469-8137.2010.03464.x.
Article
PubMed
CAS
Google Scholar
McAinsh MR, Hetherington AM: Encoding specificity in Ca2+ signaling systems. Tr Plant Sci. 1998, 3: 32-36. 10.1016/S1360-1385(97)01150-3.
Article
Google Scholar
Hazledine S, Sun J, Wysham D, Downie JA, Oldroyd GED, Morris RJ: Nonlinear time series analysis of nodulation factor induced calcium oscillations: evidence for deterministic chaos?. PLoS One. 2009, 4: 6637-6637. 10.1371/journal.pone.0006637.
Article
Google Scholar
Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG: Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 2013, 198: 190-202. 10.1111/nph.12146.
Article
PubMed
Google Scholar
Quian Quiroga R, Nadasdy Z, Ben-Shaul Y: Unsupervised spike sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004, 16: 1661-1687. 10.1162/089976604774201631.
Article
PubMed
Google Scholar
Wolf MT, Burdick JW: A Bayesian clustering method for tracking neural signals over successive Intervals. Trans Biomed Eng. 2009, 56: 2649-2659.
Article
Google Scholar
Sciacca E, Spinella S, Genre A, Calcagno C: Analysis of calcium spiking in plant root epidermis through cwc modeling. Electr Notes Theor Comp Sci. 2011, 277: 65-76.
Article
Google Scholar
GNU Octave. http://www.gnu.org/software/octave/.
Gage DJ: Infection and invasion of roots by symbiotic, nitrogen- fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev. 2004, 68: 280-300. 10.1128/MMBR.68.2.280-300.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dénarié J, Cullimore J: Lipo-oligosaccharide nodulation factors: a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell. 1993, 74: 951-954. 10.1016/0092-8674(93)90717-5.
Article
PubMed
Google Scholar
Maillet F, Poinsot V, André O, et al: Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 2011, 469: 58-64. 10.1038/nature09622.
Article
PubMed
CAS
Google Scholar
Singh S, Parniske M: Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Op Plant Biol. 2012, 15: 444-453. 10.1016/j.pbi.2012.04.002.
Article
CAS
Google Scholar
Ehrhardt DW, Wais R, Long SR: Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell. 1996, 85: 673-681. 10.1016/S0092-8674(00)81234-9.
Article
PubMed
CAS
Google Scholar
Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG: A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol. 2009, 151: 1197-1206. 10.1104/pp.109.142851.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smith SE, Smith FA: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Physiol Plant Mol Biol. 2011, 63: 227-250.
Article
Google Scholar
Smith SE, Read D: Mycorrhizal Symbiosis 3rd edition. London: Academic Press; 2008,
Google Scholar
Balzergue C, Puech-Pagès V, Bécard G, Rochange SF: The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot. 2011, 62: 1049-1060. 10.1093/jxb/erq335.
Article
PubMed
CAS
PubMed Central
Google Scholar
Volpe V, Dell’aglio E, Bonfante P: The Lotus japonicus MAMI gene links root development, arbuscular mycorrhizal symbiosis and phosphate availability. Plant Sign Behav. 2013, doi:org/10.4161/psb.23414
Google Scholar
Gu M, Chen A, Dai X, Liu W, Xu G: How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?. Plant Sign Behav. 2011, 6: 1300-1304. 10.4161/psb.6.9.16365.
Article
CAS
Google Scholar
Czarnecki O, Yang J, Weston DJ, Tuskan GA, Chen JG: A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci. 2013, 14: 7681-7701. 10.3390/ijms14047681.
Article
PubMed
PubMed Central
Google Scholar
Oldroyd GED, Downie JA: Nuclear calcium changes at the core of symbiosis signalling. Curr Op Plant Biol. 2006, 9: 351-357. 10.1016/j.pbi.2006.05.003.
Article
CAS
Google Scholar
Parniske M: Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nature. 2008, 8: 763-775.
Google Scholar
Shimoda Y, Han L, Yamazaki T, Suzuki R, Hayashi M, Imaizumi-Anraku H: Rhizobial and fungal symbioses show different requirements for calmodulin binding to calcium calmodulin-dependent protein kinase in Lotus japonicus. Plant Cell. 2012, 24: 304-321. 10.1105/tpc.111.092197.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kiers ET, Duhamel M, Beesetty Y, et al: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011, 333: 880-882. 10.1126/science.1208473.
Article
PubMed
CAS
Google Scholar
Breuillin F, Schramm J, Hajirezaei M, et al: Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J. 2010, 64: 1002-1017. 10.1111/j.1365-313X.2010.04385.x.
Article
PubMed
CAS
Google Scholar
Fiorilli V, Lanfranco L, Bonfante P: The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta. 2013, 237: 1267-1277. 10.1007/s00425-013-1842-z.
Article
PubMed
CAS
Google Scholar
Sanders FE: The Effect of Foliar-Applied Phosphate on the Mycorrhizal Infection of Onion Roots. Endomycorrhizas. Edited by: Sanders FE, Mosse B, Tinker PB. London: Academic Press; 1975, 261-276.
Google Scholar
Bécard G, Fortin JA: Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 1988, 108: 211-218. 10.1111/j.1469-8137.1988.tb03698.x.
Article
Google Scholar
Chabaud M, de Carvalho-Niebel F, Barker DG: Efficient transfor- mation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep. 2003, 22: 46-51. 10.1007/s00299-003-0649-y.
Article
PubMed
CAS
Google Scholar
Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF: High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci. 2013, 4: 426.
Article
PubMed
PubMed Central
Google Scholar
Akiyama K, Matsuzaki K, Hayashi H: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005, 435: 824-827. 10.1038/nature03608.
Article
PubMed
CAS
Google Scholar
Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M: Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell. 2005, 17: 2217-2229. 10.1105/tpc.105.032714.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ben Amor B, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV, Cook D, Long SR, Dénarié J, Gough C: The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. 2003, 34: 495-506. 10.1046/j.1365-313X.2003.01743.x.
Article
CAS
Google Scholar
Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P: A GRAS-type transcription factor with a specific function in mycorrhizal signalling. Curr Biol. 2012, 22: 2236-2241. 10.1016/j.cub.2012.09.044.
Article
PubMed
CAS
Google Scholar
Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K: Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell. 2011, 23: 3853-3865. 10.1105/tpc.111.089771.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cover TM, Thomas JA: Elements of Information Theory. Wiley-interscience: New York, USA; 1991,
Book
Google Scholar
Janicek R, Hotka M, Zahradníková A, Zahradníková A, Zahradník I: Quantitative analysis of calcium spikes in noisy fluorescent background. PLoS ONE. 2013, 8: 643-694.
Article
Google Scholar
Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG: Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact. 2001, 14: 695-700. 10.1094/MPMI.2001.14.6.695.
Article
PubMed
CAS
Google Scholar
Chabaud M, Venard C, Defaux-Petras A, Bécard G, Barker DG: Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytol. 2002, 156: 265-273. 10.1046/j.1469-8137.2002.00508.x.
Article
CAS
Google Scholar
Ramos J, Bisseling T: A method for the isolation of root hairs from the model legume Medicago truncatula. J Exp Bot. 2003, 54: 2245-2250. 10.1093/jxb/erg245.
Article
PubMed
CAS
Google Scholar
Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY: Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997, 388: 882-888. 10.1038/42264.
Article
PubMed
CAS
Google Scholar
Miyawaki A, Griesbeck O, Heim O, Tsien R: Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA. 1999, 9: 2135-2140.
Article
Google Scholar
Savitzky A, Golay MJE: Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964, 36: 1627-1639. 10.1021/ac60214a047.
Article
CAS
Google Scholar
Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ. 2004, 91: 332-344. 10.1016/j.rse.2004.03.014.
Article
Google Scholar