Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, et al: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31 (3): 279-292. 10.1046/j.1365-313X.2002.01359.x.
PubMed
CAS
Google Scholar
Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002, 130 (4): 2129-2141. 10.1104/pp.008532.
PubMed
CAS
PubMed Central
Google Scholar
Govind G, Harshavardhan V, Patricia J, Dhanalakshmi R, Senthil-Kumar M, Sreenivasulu N, Udayakumar M: Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics. 2009, 281 (6): 607-607. 10.1007/s00438-009-0441-y.
CAS
PubMed Central
Google Scholar
Haseneyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schon C-C, Taudien S, Scholz U, Stein N, Mayer K, et al: From RNA-seq to large-scale genotyping - genomics resources for rye (Secale cereale L.). BMC Plant Biol. 2011, 11 (1): 131. 10.1186/1471-2229-11-131.
PubMed
CAS
PubMed Central
Google Scholar
Marques MC, Alonso-Cantabrana H, Forment J, Arribas R, Alamar S, Conejero V, Perez-Amador M: A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus. BMC Genomics. 2009, 10 (1): 428. 10.1186/1471-2164-10-428.
PubMed
PubMed Central
Google Scholar
Bohnert HJ, Gong Q, Li P, Ma S: Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol. 2006, 9 (2): 180-188. 10.1016/j.pbi.2006.01.003.
PubMed
CAS
Google Scholar
Bouchez D, Höfte H: Functional genomics in plants. Plant Physiol. 1998, 118 (3): 725-732. 10.1104/pp.118.3.725.
PubMed
CAS
PubMed Central
Google Scholar
Henikoff S, Comai L: Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol. 2003, 54 (1): 375-401. 10.1146/annurev.arplant.54.031902.135009.
PubMed
CAS
Google Scholar
Krysan PJ, Young JC, Sussman MR: T-DNA as an insertional mutagen in Arabidopsis. Plant Cell. 1999, 11 (12): 2283-2290.
PubMed
CAS
PubMed Central
Google Scholar
Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, et al: Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 2008, 54 (2): 335-347. 10.1111/j.1365-313X.2008.03418.x.
PubMed
CAS
Google Scholar
Gilchrist EJ, Haughn GW: TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol. 2005, 8 (2): 211-215. 10.1016/j.pbi.2005.01.004.
PubMed
CAS
Google Scholar
Travella S, Klimm TE, Keller B: RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol. 2006, 142 (1): 6-20. 10.1104/pp.106.084517.
PubMed
CAS
PubMed Central
Google Scholar
Bouché N, Bouchez D: Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol. 2001, 4 (2): 111-117. 10.1016/S1369-5266(00)00145-X.
PubMed
Google Scholar
Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC: High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 2003, 22 (21): 5690-5699. 10.1093/emboj/cdg546.
PubMed
CAS
PubMed Central
Google Scholar
Baulcombe DC: Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol. 1999, 2 (2): 109-113. 10.1016/S1369-5266(99)80022-3.
PubMed
CAS
Google Scholar
Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC: Virus-induced gene silencing in plants. Methods. 2003, 30 (4): 296-303. 10.1016/S1046-2023(03)00037-9.
PubMed
CAS
Google Scholar
Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y: Virus-induced gene silencing. Methods Mol Biol. 2003, 236: 287-294.
PubMed
CAS
Google Scholar
Senthil-Kumar M, Mysore KS: New dimensions for VIGS in plant functional genomics. Trends Plant Sci. 2011, 16 (12): 656-665. 10.1016/j.tplants.2011.08.006.
PubMed
CAS
Google Scholar
Liu Y, Schiff M, Dinesh-Kumar SP: Virus-induced gene silencing in tomato. Plant J. 2002, 31 (6): 777-786. 10.1046/j.1365-313X.2002.01394.x.
PubMed
CAS
Google Scholar
Senthil-Kumar M, Rame Gowda HV, Hema R, Mysore KS, Udayakumar M: Virus-induced gene silencing and its application in characterizing genes involved in water-deficit-stress tolerance. J Plant Physiol. 2008, 165 (13): 1404-1421. 10.1016/j.jplph.2008.04.007.
PubMed
CAS
Google Scholar
George GM, van der Merwe MJ, Nunes-Nesi A, Bauer R, Fernie AR, Kossmann J, Lloyd JR: Virus-induced gene silencing of plastidial soluble inorganic pyrophosphatase impairs essential leaf anabolic pathways and reduces drought stress tolerance in Nicotiana benthamiana. Plant Physiol. 2010, 154 (1): 55-66. 10.1104/pp.110.157776.
PubMed
CAS
PubMed Central
Google Scholar
Ku H-M, Hu C-C, Chang H-J, Lin Y-T, Jan F-J, Chen C-T: Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions. Plant Physiol Bioch. 2011, 49 (10): 1147-1154. 10.1016/j.plaphy.2011.07.003.
CAS
Google Scholar
Guo Y, Huang C, Xie Y, Song F, Zhou X: A tomato glutaredoxin gene SlGRX regulates plant responses to oxidative, drought and salt stresses. Planta. 2010, 232 (6): 1499-1509. 10.1007/s00425-010-1271-1.
PubMed
CAS
Google Scholar
Liang J, Deng G, Long H, Pan Z, Wang C, Cai P, Xu D, Nima Z-X, Yu M: Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley Hordeum vulgare ssp. vulgare and their relationship to drought tolerance. Mol Breed. 2012, 30 (1): 441-451. 10.1007/s11032-011-9633-3.
CAS
Google Scholar
Catinot J, Buchala A, Abou-Mansour E, Métraux J-P: Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett. 2008, 582 (4): 473-478. 10.1016/j.febslet.2007.12.039.
PubMed
CAS
Google Scholar
Choi H, Hwang B: The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta. 2012, 235 (6): 1369-1382. 10.1007/s00425-011-1580-z.
PubMed
CAS
Google Scholar
Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J: A central integrator of transcription networks in plant stress and energy signalling. Nature. 2007, 448 (7156): 938-942. 10.1038/nature06069.
PubMed
CAS
Google Scholar
Senthil-Kumar M, Mysore KS: Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotech J. 2011, 9: 797-806. 10.1111/j.1467-7652.2011.00589.x.
CAS
Google Scholar
Lacomme C: Milestones in the development and applications of plant virus vector as gene silencing platforms. Current Top Microbiology and Immunology. 2011, 1-17.
Google Scholar
Anand A, Vaghchhipawala Z, Ryu C-M, Kang L, Wang K, del-Pozo O, Martin GB, Mysore KS: Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol Plant Microbe. 2007, 20 (1): 41-52. 10.1094/MPMI-20-0041.
CAS
Google Scholar
Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C: Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol. 2005, 138 (4): 2155-2164. 10.1104/pp.105.062810.
PubMed
CAS
PubMed Central
Google Scholar
Senthil-Kumar M, Govind G, Kang L, Mysore K, Udayakumar M: Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta. 2007, 225 (3): 523-539. 10.1007/s00425-006-0367-0.
PubMed
CAS
Google Scholar
GENEVESTIGATOR database. https://www.genevestigator.com/gv/index.jsp.
Ryu C-M, Anand A, Kang L, Mysore KS: Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J. 2004, 40 (2): 322-331. 10.1111/j.1365-313X.2004.02211.x.
PubMed
CAS
Google Scholar
Shi H, Ishitani M, Kim C, Zhu J-K: The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H + antiporter. Proc Natl Acad Sci USA. 2000, 97 (12): 6896-6901. 10.1073/pnas.120170197.
PubMed
CAS
PubMed Central
Google Scholar
Wang J, Zhang H, Allen RD: Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 1999, 40 (7): 725-732. 10.1093/oxfordjournals.pcp.a029599.
PubMed
CAS
Google Scholar
Roxas VP, Smith RK, Allen ER, Allen RD: Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol. 1997, 15 (10): 988-991. 10.1038/nbt1097-988.
PubMed
CAS
Google Scholar
Chang CCC, Ślesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpińska B, Karpiński S: Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol. 2009, 150 (2): 670-683. 10.1104/pp.109.135566.
PubMed
CAS
PubMed Central
Google Scholar
Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H: Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant. 2002, 116 (3): 317-327. 10.1034/j.1399-3054.2002.1160306.x.
CAS
Google Scholar
Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K: Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant. 2006, 127 (1): 57-65. 10.1111/j.1399-3054.2006.00624.x.
CAS
Google Scholar
Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S: Enhancement of stress tolerance in transgenic tobacco plants overexpressing chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J. 2004, 37 (1): 21-33. 10.1046/j.1365-313X.2003.01930.x.
PubMed
CAS
Google Scholar
Deak M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D: Plants ectopically expressing the ironbinding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotech. 1999, 17 (2): 192-196. 10.1038/6198.
CAS
Google Scholar
Gurley WB: HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell. 2000, 12 (4): 457-460.
PubMed
CAS
PubMed Central
Google Scholar
Koizumi N: Isolation and responses to stress of a gene that encodes a luminal binding protein in Arabidopsis thaliana. Plant Cell Physiol. 1996, 37 (6): 862-865. 10.1093/oxfordjournals.pcp.a029023.
PubMed
CAS
Google Scholar
Kishor PBK, Hong Z, Miao G-H, Hu C-AA, Verma DPS: Overexpression of DELTA-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995, 108 (4): 1387-1394.
PubMed
CAS
PubMed Central
Google Scholar
Albrecht V, Weinl S, Blazevic D, D'Angelo C, Batistic O, Kolukisaoglu Ü, Bock R, Schulz B, Harter K, Kudla J: The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J. 2003, 36 (4): 457-470. 10.1046/j.1365-313X.2003.01892.x.
PubMed
CAS
Google Scholar
Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ, Luan S: CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell. 2003, 15 (8): 1833-1845. 10.1105/tpc.012393.
PubMed
CAS
PubMed Central
Google Scholar
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003, 15 (1): 63-78. 10.1105/tpc.006130.
PubMed
CAS
PubMed Central
Google Scholar
Chen Y, Ji F, Xie H, Liang J: Overexpression of the regulator of G-protein signalling protein enhances ABA-mediated inhibition of root elongation and drought tolerance in Arabidopsis. J Exp Bot. 2006, 57 (9): 2101-2110. 10.1093/jxb/erj167.
PubMed
CAS
Google Scholar
Ko J-H, Yang SH, Han K-H: Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J. 2006, 47 (3): 343-355. 10.1111/j.1365-313X.2006.02782.x.
PubMed
CAS
Google Scholar
Mauch-Mani B, Slusarenko AJ: Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to peronospora parasitica. Plant Cell. 1996, 8 (2): 203-212.
PubMed
CAS
PubMed Central
Google Scholar
Rogers EE, Ausubel FM: Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression. Plant Cell. 1997, 9 (3): 305-316.
PubMed
CAS
PubMed Central
Google Scholar
Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR: The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell. 2003, 15 (9): 2181-2191. 10.1105/tpc.012849.
PubMed
PubMed Central
Google Scholar
Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL: RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell. 2002, 14 (5): 1005-1015. 10.1105/tpc.001032.
PubMed
CAS
PubMed Central
Google Scholar
Grant JJ, Chini A, Basu D, Loake GJ: Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe In. 2003, 16 (8): 669-680. 10.1094/MPMI.2003.16.8.669.
CAS
Google Scholar
Watanabe N, Lam E: Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J. 2011, 66 (6): 969-982. 10.1111/j.1365-313X.2011.04554.x.
PubMed
CAS
Google Scholar
Liu Y, Schiff M, Dinesh-Kumar SP: Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J. 2004, 38 (5): 800-809. 10.1111/j.1365-313X.2004.02085.x.
PubMed
CAS
Google Scholar
Geraats BPJ, Bakker PAHM, Lawrence CB, Achuo EA, Höfte M, van Loon LC: Ethylene-insensitive tobacco shows differentially altered susceptibility to different pathogens. Phytopathology. 2003, 93 (7): 813-821. 10.1094/PHYTO.2003.93.7.813.
PubMed
Google Scholar
Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S: Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot. 2002, 53 (377): 2099-2106. 10.1093/jxb/erf044.
PubMed
CAS
Google Scholar
Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45 (4): 523-539. 10.1111/j.1365-313X.2005.02593.x.
PubMed
CAS
Google Scholar
Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X: Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. CORD Conference Proceedings. 2010, 32 (8): 1173-1179.
CAS
Google Scholar
Shin D, Moon S-J, Han S, Kim B-G, Park SR, Lee S-K, Yoon H-J, Lee HE, Kwon H-B, Baek D, et al: Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol. 2011, 155 (1): 421-432. 10.1104/pp.110.163634.
PubMed
CAS
PubMed Central
Google Scholar
Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA. 1999, 96 (6): 3292-3297. 10.1073/pnas.96.6.3292.
PubMed
CAS
PubMed Central
Google Scholar
Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ: Drought tolerance established by enhanced expression of the CC–NBS–LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J. 2004, 38 (5): 810-822. 10.1111/j.1365-313X.2004.02086.x.
PubMed
CAS
Google Scholar
Xing Y, Jia W, Zhang J: AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J Exp Bot. 2007, 58 (11): 2969-2981. 10.1093/jxb/erm144.
PubMed
CAS
Google Scholar
Wang Y, Wang T, Li K, Li X: Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress. Plant Growth Regul. 2008, 54 (3): 261-269. 10.1007/s10725-007-9249-0.
Google Scholar
Jiang W, Yu D: Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol. 2009, 9 (1): 96. 10.1186/1471-2229-9-96.
PubMed
PubMed Central
Google Scholar
Ganesan G, Sankararamasubramanian HM, Harikrishnan M, Ashwin G, Parida A: A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. J Exp Bot. 2012, 63 (12): 4549-4561. 10.1093/jxb/ERS135.
PubMed
CAS
Google Scholar
Parida AK, Das AB: Salt tolerance and salinity effects on plants: a review. Ecotoxi Environ Safe. 2005, 60 (3): 324-349. 10.1016/j.ecoenv.2004.06.010.
CAS
Google Scholar
Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T: Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J. 2002, 29 (5): 637-647. 10.1046/j.0960-7412.2001.01246.x.
PubMed
CAS
Google Scholar
Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF: Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem. 2008, 46 (1): 82-92. 10.1016/j.plaphy.2007.10.011.
PubMed
CAS
Google Scholar
Yang L, Zu Y-G, Tang Z-H: Ethylene improves Arabidopsis salt tolerance mainly via retaining K + in shoots and roots rather than decreasing tissue Na + content. Environ Exp Bot. 2013, 86: 60-69.
CAS
Google Scholar
Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT: QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet. 2000, 100 (8): 1197-1202. 10.1007/s001220051424.
CAS
Google Scholar
Katiyar-Agarwal S, Agarwal M, Grover A: Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol. 2003, 51 (5): 677-686. 10.1023/A:1022561926676.
PubMed
CAS
Google Scholar
Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C: Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J. 2004, 38 (6): 940-953. 10.1111/j.1365-313X.2004.02092.x.
PubMed
CAS
Google Scholar
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G: Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot. 2010, 61 (15): 4197-4220. 10.1093/jxb/erq282.
PubMed
CAS
Google Scholar
Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY: Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep. 2007, 26 (5): 591-598. 10.1007/s00299-006-0253-z.
PubMed
CAS
Google Scholar
Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK: The plasma membrane Na+/H + antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA. 2006, 103 (49): 18816-18821. 10.1073/pnas.0604711103.
PubMed
CAS
PubMed Central
Google Scholar
Kim M, Lee U, Small I, des Francs-Small CC, Vierling E: Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101. Plant Cell. 2012, 24 (8): 3349-3365. 10.1105/tpc.112.101006.
PubMed
CAS
PubMed Central
Google Scholar
Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, et al: Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008, 53 (1): 11-28. 10.1111/j.1365-313X.2007.03318.x.
PubMed
Google Scholar
Guo J, Pang Q, Wang L, Yu P, Li N, Yan X: Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Sci. 2012, 10 (1): 57. 10.1186/1477-5956-10-57.
PubMed
CAS
PubMed Central
Google Scholar
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z: Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010, 153 (4): 1526-1538. 10.1104/pp.110.157370.
PubMed
CAS
PubMed Central
Google Scholar
Bashandy T, Taconnat L, Renou JP, Meyer Y, Reichheld JP: Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C. Mol Plant. 2009, 2 (2): 249-258.
PubMed
CAS
Google Scholar
Atkinson NJ, Urwin PE: The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012, 63 (10): 3523-3543. 10.1093/jxb/ers100.
PubMed
CAS
Google Scholar
Wang K, Kang L, Anand A, Lazarovits G, Mysore KS: Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. New Phytol. 2007, 174 (1): 212-223. 10.1111/j.1469-8137.2007.01999.x.
PubMed
CAS
Google Scholar
Wang K, Senthil-Kumar M, Ryu C-M, Kang L, Mysore KS: Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol. 2012, 158 (4): 1789-1802. 10.1104/pp.111.189217.
PubMed
CAS
PubMed Central
Google Scholar
Dean JD, Goodwin PH, Hsiang T: Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot. 2005, 56 (416): 1525-1533. 10.1093/jxb/eri145.
PubMed
CAS
Google Scholar
Gao F, Shu X, Ali M, Howard S, Li N, Winterhagen P, Qiu W, Gassmann W: A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant. Planta. 2010, 231 (5): 1037-1047. 10.1007/s00425-010-1107-z.
PubMed
CAS
Google Scholar
Tuba Z, Lichtenthaler HK, Csintalan Z, Nagy Z, Szente K: Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiol Plant. 1996, 96 (3): 383-388. 10.1111/j.1399-3054.1996.tb00448.x.
CAS
Google Scholar
Maathuis FJM, Amtmann A: K + nutrition and Na + toxicity: The basis of cellular K+/Na + ratios. Ann Bot. 1999, 84 (2): 123-133. 10.1006/anbo.1999.0912.
CAS
Google Scholar
Mittal S, Kumari N, Sharma V: Differential response of salt stress on brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Bioch. 2012, 54: 17-26.
CAS
Google Scholar
OlÍAs R, Eljakaoui Z, Li JUN, De Morales PA, MarÍN-Manzano MC, Pardo JM, Belver A: The plasma membrane Na+/H + antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na + between plant organs. Plant Cell Environ. 2009, 32 (7): 904-916. 10.1111/j.1365-3040.2009.01971.x.
PubMed
Google Scholar
Hong S-W, Lee U, Vierling E: Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol. 2003, 132 (2): 757-767. 10.1104/pp.102.017145.
PubMed
CAS
PubMed Central
Google Scholar
Queitsch C, Hong S-W, Vierling E, Lindquist S: Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 2000, 12 (4): 479-492.
PubMed
CAS
PubMed Central
Google Scholar
Nieto-Sotelo J, Martínez LM, Ponce G, Cassab GI, Alagón A, Meeley RB, Ribaut J-M, Yang R: Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell. 2002, 14 (7): 1621-1633. 10.1105/tpc.010487.
PubMed
CAS
PubMed Central
Google Scholar
Senthil‒Kumar M, Srikanthbabu V, Mohan Raju B, Kumar G, Shivaprakash N, Udayakumar M: Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: a novel approach by exploiting residual variability. J Exp Bot. 2003, 54 (392): 2569-2578. 10.1093/jxb/erg278.
Google Scholar
Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J: Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol. 2011, 75 (4): 365-378.
PubMed
CAS
PubMed Central
Google Scholar
Xiong L, Yang Y: Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell. 2003, 15 (3): 745-759. 10.1105/tpc.008714.
PubMed
CAS
PubMed Central
Google Scholar
Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS: Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol. 2006, 142 (2): 429-440. 10.1104/pp.106.083295.
PubMed
CAS
PubMed Central
Google Scholar
Patade VY, Bhargava S, Suprasanna P: Effects of NaCl and iso-osmotic PEG stress on growth, osmolytes accumulation and antioxidant defense in cultured sugarcane cells. Plant Cell Tiss Org. 2012, 108 (2): 279-286. 10.1007/s11240-011-0041-5.
CAS
Google Scholar
Huguet-Robert V, Sulpice R, Lefort C, Maerskalck V, Emery N, Larher FR: The suppression of osmoinduced proline response of Brassica napus L. var oleifera leaf discs by polyunsaturated fatty acids and methyl-jasmonate. Plant Sci. 2003, 164 (1): 119-127. 10.1016/S0168-9452(02)00343-6.
CAS
Google Scholar
Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N: Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A. 2005, 102 (2): 509-514. 10.1073/pnas.0406485102.
PubMed
CAS
PubMed Central
Google Scholar
Ramegowda V, Senthil-Kumar M, Nataraja KN, Reddy MK, Mysore KS, Udayakumar M: Expression of a finger millet transcription factor, EcNAC1 in tobacco confers abiotic stress-tolerance. PLoS ONE. 2012, 7 (7): e40397. 10.1371/journal.pone.0040397.
PubMed
CAS
PubMed Central
Google Scholar