Malladi A, Johnson LK: Expression profiling of cell cycle genes reveals key facilitators of cell production during carpel development, fruit set, and fruit growth in apple (Malus × domestica Borkh.). J Exp Bot. 2011, 62: 205-219. 10.1093/jxb/erq258.
Article
PubMed
CAS
PubMed Central
Google Scholar
Denne MP: The growth of apple fruitlets and the effect of early thinning on fruit development. Ann Bot. 1960, 24: 397-406.
Google Scholar
Malladi A, Hirst PM: Increase in fruit size of a spontaneous mutant of ‘Gala’apple (Malus × domestica Borkh.) is facilitated by altered cell production and enhanced cell size. J Exp Bot. 2010, 61: 3003-3013. 10.1093/jxb/erq134.
Article
PubMed
CAS
PubMed Central
Google Scholar
Goffinet M, Robinson T, Lakso A: A comparison of 'Empire'apple fruit size and anatomy in unthinned and hand-thinned trees. J Hort Sci. 1995, 70: 375-388.
Google Scholar
Harada T, Kurahashi W, Yanai M, Wakasa Y, Satoh T: Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Scientia Hort. 2005, 105: 447-456. 10.1016/j.scienta.2005.02.006.
Article
CAS
Google Scholar
Chevalier C: Cell cycle control and fruit development. Cell cycle control and plant development. Edited by: Inze D. 2007, Blackwell Publishing, Ames, 269-293.
Chapter
Google Scholar
Joubes J, Phan TH, Just D, Rothan C, Bergounioux C, Raymond P, Chevalier C: Molecular and biochemical characterization of the involvement of cyclin-dependent kinase A during early development of tomato fruit. Plant Physiol. 1999, 121: 857-869. 10.1104/pp.121.3.857.
Article
PubMed
CAS
PubMed Central
Google Scholar
Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling TJ, Ross JJ, Hallett IC, Gunaseelan K, Dayatilake GA, Diak R, Breen KC, Tustin DS, Costes E, Chagne D, Schaffer RJ, David KM: A genomics approach to understanding the role of auxin in apple (Malus × domestica) fruit size control. BMC Plant Biol. 2012, 12: 7-10.1186/1471-2229-12-7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD: fw2. 2: A quantitative trait locus key to the evolution of tomato fruit size. Science. 2000, 289: 85-88. 10.1126/science.289.5476.85.
Article
PubMed
CAS
Google Scholar
Cong B, Tanksley SD: FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol. 2006, 62: 867-880. 10.1007/s11103-006-9062-6.
Article
PubMed
CAS
Google Scholar
Xiao H, Jiang N, Schaffner EK, Stockinger EJ, van der Knaap E: A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008, 319: 1527-1530. 10.1126/science.1153040.
Article
PubMed
CAS
Google Scholar
Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E: SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol. 2011, 157: 1175-1186. 10.1104/pp.111.181065.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krizek BA: Making bigger plants: key regulators of final organ size. Curr Opin Plant Biol. 2009, 12: 17-22. 10.1016/j.pbi.2008.09.006.
Article
PubMed
CAS
Google Scholar
Johnson K, Lenhard M: Genetic control of plant organ growth. New Phytol. 2011, 191: 319-333. 10.1111/j.1469-8137.2011.03737.x.
Article
PubMed
Google Scholar
Guo M, Simmons CR: Cell number counts-The fw2. 2 and CNR genes and implications for controlling plant fruit and organ size. Plant Sci. 2011, 181: 1-7. 10.1016/j.plantsci.2011.03.010.
Article
PubMed
CAS
Google Scholar
Elliott R, Betzner A, Huttner E, Oakes M, Tucker W, Gerentes D, Perez P, Smyth D: AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996, 8: 155-168.
Article
PubMed
CAS
PubMed Central
Google Scholar
Klucher KM, Chow H, Reiser L, Fischer RL: The AINTEGUMENTA gene of arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996, 8: 137-153.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krizek B: Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet. 1999, 25: 224-236. 10.1002/(SICI)1520-6408(1999)25:3<224::AID-DVG5>3.0.CO;2-Y.
Article
PubMed
CAS
Google Scholar
Mizukami Y, Fischer R: Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA. 2000, 97: 942-947. 10.1073/pnas.97.2.942.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nole-Wilson S, Krizek B: AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiol. 2006, 141: 977-987. 10.1104/pp.106.076604.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krizek BA: AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol. 2009, 150: 1916-1929. 10.1104/pp.109.141119.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hu Y, Xie Q, Chua NH: The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell. 2003, 15: 1951-1961. 10.1105/tpc.013557.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ: The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development. 2006, 133: 251-261.
Article
PubMed
CAS
Google Scholar
Nole-Wilson S, Krizek B: DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res. 2000, 28: 4076-4082. 10.1093/nar/28.21.4076.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krizek BA: AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Res. 2003, 31: 1859-1868. 10.1093/nar/gkg292.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jofuku KD, Boer BGW, Montagu MV, Okamuro JK: Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994, 6: 1211-1225.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jofuku KD, Omidyar PK, Gee Z, Okamuro JK: Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA. 2005, 102: 3117-3122. 10.1073/pnas.0409893102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ohto M, Fischer RL, Goldberg RB, Nakamura K, Harada JJ: Control of seed mass by APETALA2. Proc Natl Acad Sci USA. 2005, 102: 3123-3128. 10.1073/pnas.0409858102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Würschum T, Groß-Hardt R, Laux T: APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell. 2006, 18: 295-307. 10.1105/tpc.105.038398.
Article
PubMed
PubMed Central
Google Scholar
Ripoll JJ, Roeder AHK, Ditta GS, Yanofsky MF: A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development. 2011, 138: 5167-5176. 10.1242/dev.073031.
Article
PubMed
CAS
Google Scholar
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y, Amasino R, Scheres B: The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell. 2004, 119: 109-120. 10.1016/j.cell.2004.09.018.
Article
PubMed
CAS
Google Scholar
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B: PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature. 2007, 449: 1053-1057. 10.1038/nature06206.
Article
PubMed
CAS
Google Scholar
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AAM, Miki BLA: Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002, 14: 1737-1749. 10.1105/tpc.001941.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nole-Wilson S, Tranby TL, Krizek BA: AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol. 2005, 57: 613-628. 10.1007/s11103-005-0955-6.
Article
PubMed
CAS
Google Scholar
Krizek B, Eaddy M: AINTEGUMETA-LIKE6 regulates cellular differentiation in flowers. Plant Mol Biol. 2012, 78: 199-209. 10.1007/s11103-011-9844-3.
Article
PubMed
CAS
Google Scholar
Krizek B, Sulli C: Mapping sequences required for nuclear localization and the transcriptional activation function of the Arabidopsis protein AINTEGUMENTA. Planta. 2006, 224: 612-621. 10.1007/s00425-006-0253-9.
Article
PubMed
CAS
Google Scholar
Pratt C: Apple flower and fruit: Anatomy and Morphology. Hort Rev. 1988, 10: 273-308.
Google Scholar
Yao JL, Dong YH, Kvarnheden A, Morris B: Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hort Sci. 1999, 124: 8-13.
CAS
Google Scholar
Bertin N: Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann Bot. 2005, 95: 439-447.
Article
PubMed
CAS
PubMed Central
Google Scholar
Baldet P, Hernould M, Laporte F, Mounet F, Just D, Mouras A, Chevalier C, Rothan C: The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. J Exp Bot. 2006, 57: 961-970. 10.1093/jxb/erj082.
Article
PubMed
CAS
Google Scholar
Morandi B, Grappadelli LC, Rieger M, Lo Bianco R: Carbohydrate availability affects growth and metabolism in peach fruit. Physiol Plant. 2008, 133: 229-241. 10.1111/j.1399-3054.2008.01068.x.
Article
PubMed
CAS
Google Scholar
Prudent M, Bertin N, Génard M, Munos S, Rolland S, Garcia V, Peti J, Baldet P, Rothan C, Causse M: Genotype‒dependent response to carbon availability in growing tomato fruit. Plant Cell Environ. 2010, 33: 1186-1204.
PubMed
CAS
Google Scholar
Johnson LK, Malladi A, NeSmith S: Differences in cell number facilitate fruit size variation in rabbiteye blueberry genotypes. J Am Soc Hort Sci. 2011, 136: 10-15.
Google Scholar
Cong B, Liu J, Tanksley SD: Natural alleles of a tomato QTL modulate fruit size through heterochronic regulatory mutations. Proc Natl Acad Sci USA. 2002, 99: 13606-13611. 10.1073/pnas.172520999.
Article
PubMed
CAS
PubMed Central
Google Scholar
Aoki K, Ogata Y, Shibata D: Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 2007, 48: 381-390. 10.1093/pcp/pcm013.
Article
PubMed
CAS
Google Scholar
McMaster GS, Wilhelm W: Growing degree-days: one equation, two interpretations. Agr For Meteorol. 1997, 87: 291-300. 10.1016/S0168-1923(97)00027-0.
Article
Google Scholar
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, et al: The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet. 2010, 42: 833-839. 10.1038/ng.654.
Article
PubMed
CAS
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pfaffl M: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29: 2002-2007.
Article
Google Scholar
Rieu I, Powers SJ: Real-time quantitative RT-PCR: Design, calculations, and statistics. Plant Cell. 2009, 21: 1031-1033. 10.1105/tpc.109.066001.
Article
PubMed
CAS
PubMed Central
Google Scholar