Green RM, Tingay S, Wang ZY, Tobin EM: Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 2002, 129 (2): 576-84. 10.1104/pp.004374.
Article
PubMed
CAS
PubMed Central
Google Scholar
Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR: Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science. 2003, 302: 1049-1053. 10.1126/science.1082971.
Article
PubMed
CAS
Google Scholar
Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science. 2005, 309: 630-633. 10.1126/science.1115581.
Article
PubMed
CAS
Google Scholar
Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ: Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature. 2009, 457: 327-31. 10.1038/nature07523.
Article
PubMed
CAS
PubMed Central
Google Scholar
McClung RC: Linking the loops. Science. 2009, 13: 1440-1441.
Article
Google Scholar
Wang ZY, Tobin EM: Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell. 1998, 93: 1207-1217. 10.1016/S0092-8674(00)81464-6.
Article
PubMed
CAS
Google Scholar
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre´ IA, Coupland G: The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell. 1998, 93: 1219-1229. 10.1016/S0092-8674(00)81465-8.
Article
PubMed
CAS
Google Scholar
Huang W, PÃrez-GarcÃÂa P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P: Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science. 2012, 336 (6077): 75-79. 10.1126/science.1219075.
Article
PubMed
CAS
Google Scholar
Ding Z, Doyle MR, Amasino RM, Davis SJ: A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics. 2007, 176 (3): 1501-1510. 10.1534/genetics.107.072769.
Article
PubMed
CAS
PubMed Central
Google Scholar
Farre´ EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA: Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol. 2005, 15: 47-54. 10.1016/j.cub.2004.12.067.
Article
Google Scholar
Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T: PSEUDORESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol. 2005, 46: 686-698. 10.1093/pcp/pci086.
Article
PubMed
CAS
Google Scholar
Matsushika A, Makino S, Kojima M, Mizuno T: Circadian waves of expression of the APRR1/TOC1 family of pseudo-responseregulators in Arabidopsis thaliana: Insight into the plant circadian clock. Plant Cell Physiol. 2000, 41: 1002-1012. 10.1093/pcp/pcd043.
Article
PubMed
CAS
Google Scholar
Locke JC, Kozma-Bognar L, Gould PD, Feher B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ: Experimental validation of a predicted feedback loop in the multi- oscillator clock of Arabidopsis thaliana. Mol Syst Biol. 2006, 2: 59.
Article
PubMed
PubMed Central
Google Scholar
Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE: ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature. 2007, 449: 356-360. 10.1038/nature06132.
Article
PubMed
CAS
Google Scholar
Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno T, Millar AJ: Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Molecular Systems Biology. 2010, 6: 416.
Article
PubMed
PubMed Central
Google Scholar
Yakir E, Hilman D, Harir Y, Green RM: Regulation of output from the plant circadian clock. FEBS J. 2007, 274: 335-345. 10.1111/j.1742-4658.2006.05616.x.
Article
PubMed
CAS
Google Scholar
Tóth R, Coupland G, de Montaigu A: Plant development goes like clockwork. Trends Genet. 2010, 26: 296-306. 10.1016/j.tig.2010.04.003.
Article
PubMed
Google Scholar
Hayes KR, Beatty M, Meng X, Simmons CR, Habben JE, Danilevskaya ON: Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One. 2010, 5 (9): e12887-10.1371/journal.pone.0012887.
Article
PubMed
PubMed Central
Google Scholar
Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ, Motoyama R, Sawada Y, Yano M, Hirai MY, Makino A, Nagamurad Y: Os-GIGANTEA Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field. Plant Cell. 2010, 10.1105/tpc.111.083238.
Google Scholar
Murakami M, Tago Y, Yamashino T, Mizuno T: Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol. 2007, 48: 110-121.
Article
PubMed
CAS
Google Scholar
Miwa K, Serikawa M, Suzuki S, Kondo T, Oyama T: Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses. Plant Cell Physiol. 2006, 47: 601-612. 10.1093/pcp/pcj027.
Article
PubMed
CAS
Google Scholar
Serikawa M, Miwa K, Kondo T, Oyama T: Functional conservation of clock-related genes in flowering plants: overexpression and RNA interference analyses of the circadian rhythm in the monocotyledon Lemna gibba. Plant Physiol. 2008, 146: 1952-1963. 10.1104/pp.107.114611.
Article
PubMed
CAS
PubMed Central
Google Scholar
Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T: The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol. 2003, 44 (11): 1229-36. 10.1093/pcp/pcg135.
Article
PubMed
CAS
Google Scholar
Murakami M, Tago Y, Yamashino T, Mizuno T: Characterization of the rice circadian clock-associated pseudo-response regulators in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2007, 71 (4): 1107-10. 10.1271/bbb.70048.
Article
PubMed
CAS
Google Scholar
Baum M, von Korff M, Guo P, Lakew B, Udupa SM, Sayed H,Choumane W, Grando S, Ceccarelli S: In Molecular approaches andbreeding strategies for drought tolerance in barley, Genomic assisted cropimprovement: Vol2: Genomics applications in Crops. Edited by VarshneyR, Tuberosa R.: Springer Netherlands; 2007:51–79.
Google Scholar
Von Korff M, Grando S, This D, Baum M, Ceccarelli S: Quantitative trait loci (QTL) associated with agronomic performance of barley under drought. Theoret Appl Genet. 2008, 117: 653-669. 10.1007/s00122-008-0787-2.
Article
CAS
Google Scholar
Turner A, Beales J, Faure S, Dunford RP, Laurie DA: The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science. 2005, 310: 1031-1034. 10.1126/science.1117619.
Article
PubMed
CAS
Google Scholar
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G: FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007, 316: 1030-1033. 10.1126/science.1141752.
Article
PubMed
CAS
Google Scholar
Turck F, Fornara F, Coupland G: Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol. 2008, 59: 573-594. 10.1146/annurev.arplant.59.032607.092755.
Article
PubMed
CAS
Google Scholar
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G: Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science. 2008, 303: 1003-1006.
Article
Google Scholar
Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C: Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol. 2007, 143: 225-235.
Article
PubMed
CAS
PubMed Central
Google Scholar
Trevaskis B, Hemming MN, Peacock WJ, Dennis ES: HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol. 2006, 140: 1397-1405. 10.1104/pp.105.073486.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J: Positional Cloning of the Wheat Vernalization Gene VRN1. Proc Nat Ac Sci. 2003, 100: 6263-6268. 10.1073/pnas.0937399100.
Article
CAS
Google Scholar
Hemming MN, Fieg S, Peacock WJ, Dennis ES, Trevaskis B: Regions associated with repression of the barley Hordeum vulgare VERNALIZATION1 gene are not required for cold induction. Molecular Genetics and Genomics. 2009, 282: 107-117. 10.1007/s00438-009-0449-3.
Article
PubMed
CAS
Google Scholar
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J: The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004, 303: 1640-1644. 10.1126/science.1094305.
Article
PubMed
CAS
Google Scholar
Hemming MN, Peacock WJ, Dennis ES, Trevaskis B: Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in Barley. Plant Physiol. 2008, 147: 355-366. 10.1104/pp.108.116418.
Article
PubMed
CAS
PubMed Central
Google Scholar
Campoli C, Drosse B, Searle I, Coupland G, von Korff M: Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time orthologs of CONSTANS. Plant J. 2012, 69: 868-880. 10.1111/j.1365-313X.2011.04839.x.
Article
PubMed
CAS
Google Scholar
Von Korff M, Wang H, Léon J, Pillen K: Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet. 2004, 109: 1736-1745. 10.1007/s00122-004-1818-2.
Article
PubMed
CAS
Google Scholar
Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K: High-Resolution Genotyping of Wild Barley Introgression Lines and Fine-Mapping of the Threshability Locus thresh-1 Using the IlluminaGoldenGate Assay. Genes, Genomes Genetics. 2011, 10.1534/g3.111.000182.
Google Scholar
Dunford RP, Griffiths S, Christodoulou V, Laurie DA: Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet. 2005, 110: 925-931. 10.1007/s00122-004-1912-5.
Article
PubMed
CAS
Google Scholar
Higgins JA, Bailey PC, Laurie DA: Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE. 2010, 5 (4): e10065-10.1371/journal.pone.0010065.
Article
PubMed
PubMed Central
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011, 10.1093/molbev/msr121.
Google Scholar
Zuckerkandl E, Pauling L: Evolutionary divergence and convergence inproteins. In Evolving genes and proteins. Edited by Bryson V: Vodel HJ,Academic Press, NY; 1965:97–166.
Google Scholar
Saitou N, Nei M: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4: 406-425.
PubMed
CAS
Google Scholar
Kolmos E, Schoof H, Plümer M, Davis SJ: Structural insights into the function of the core-circadian factor TIMING OF CAB2 EXPRESSION 1 (TOC1). J Circadian Rhythms. 2008, 25: 6-3.
Google Scholar
Yanovsky MJ, Kay SA: Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol. 2003, 4: 265-275. 10.1038/nrm1077.
Article
PubMed
CAS
Google Scholar
Barak S, Tobin EM, Andronis C, Sugano S, Green RM: All in good time: The Arabidopsis circadian clock. Trends Plant Sci. 2000, 5: 517-522. 10.1016/S1360-1385(00)01785-4.
Article
PubMed
CAS
Google Scholar
Griffiths S, Dunford RP, Coupland G, Laurie DA: The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol. 2003, 131: 1855-1867. 10.1104/pp.102.016188.
Article
PubMed
CAS
PubMed Central
Google Scholar
Faure S, Higgins J, Turner A, Laurie DA: The flowering locus FT-like gene family in barley (Hordeum vulgare). Genetics. 2007, 176: 599-609. 10.1534/genetics.106.069500.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brandt J, Nielsen VS, Thordal-Christensen H, Simpson DJ, Okkels JS: A barley cDNA clone encoding a type III chlorophyll a/b binding polypeptide of the light harvesting complex II. Plant Mol Biol. 1992, 19: 699-703. 10.1007/BF00026796.
Article
PubMed
CAS
Google Scholar
Staiger D, Apel K: Circadian clock-regulated expression of an RNA-binding protein in Arabidopsis: characterisation of a minimal promoter element. Mol Gen Genet. 1999, 261: 811-819. 10.1007/s004380050025.
Article
PubMed
CAS
Google Scholar
Dunn MA, Brown K, Lightowlers R, Hughes MA: A low-temperature-responsive gene from encodes a protein with single-stranded nucleic acid-binding activity which is phosphorylated in vitro. Plant Mol Biol. 1996, 30 (5): 947-959. 10.1007/BF00020806.
Article
PubMed
CAS
Google Scholar
Kay SA, Millar AJ: In Circadian regulated Cab gene transcription in higherplants, The molecular genetics of biological rhythms. Edited by YoungMW. New York: Marcel Dekker; 1993:73–90.
Google Scholar
Nagy F, Key S, Chua NH: A circadian clock regulates transcription of the wheat Cab-1 gene. Genes Dev. 1988, 2: 376-382. 10.1101/gad.2.4.376.
Article
CAS
Google Scholar
Takata N, Saito S, Saito CT, Uemura M: Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol. 2010, 10: 126-10.1186/1471-2148-10-126.
Article
PubMed
PubMed Central
Google Scholar
McClung R: A modern circadian clock in the common angiosperm ancestor of monocots and eudicots. BMC Evol Biol. 2010, 8: 55.
Article
Google Scholar
Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K: Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature. 2003, 422: 719-722. 10.1038/nature01549.
Article
PubMed
CAS
Google Scholar
Hong S-Y, Lee S, Seo PJ, Yang M-S, Park C-M: Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants. Plant Mol Biol. 2010, 72 (4–5): 485-497.
Article
PubMed
CAS
Google Scholar
Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS: The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Mol Biol. 2005, 58: 53-64. 10.1007/s11103-005-4162-2.
Article
PubMed
CAS
Google Scholar
Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJM, Weller JL: Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol. 2007, 144 (2): 648-661. 10.1104/pp.107.096818.
Article
PubMed
CAS
PubMed Central
Google Scholar
Beales J, Turner A, Griffiths S, Snape JW, Laurie DA: A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet. 2007, 115: 721-733. 10.1007/s00122-007-0603-4.
Article
PubMed
CAS
Google Scholar
Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD: Candidate gene association mapping of Arabidopsis flowering time. Genetics. 2009, 183: 325-335. 10.1534/genetics.109.105189.
Article
PubMed
CAS
PubMed Central
Google Scholar
Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T: Genes encoding pseudo-response regulators: Insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 2000, 41: 791-803. 10.1093/pcp/41.6.791.
Article
PubMed
CAS
Google Scholar
Makino S, Matsushika A, Kojima M, Oda Y, Mizuno T: Light response of the circadian waves of the APRR1/TOC1 quintet: When does the quintet start singing rhythmically in Arabidopsis?. Plant Cell Physiol. 2001, 42: 334-339. 10.1093/pcp/pce036.
Article
PubMed
CAS
Google Scholar
Murakami M, Matsushika A, Ashikari M, Yamashino T, Mizuno T: Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering time. Biosci Biotechnol Biochem. 2005, 69: 410-414. 10.1271/bbb.69.410.
Article
PubMed
CAS
Google Scholar
Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, Mizuno T: Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS dependent photoperiodic pathway. Plant Cell Physiol. 2007, 48: 822-832. 10.1093/pcp/pcm056.
Article
PubMed
CAS
Google Scholar
Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, LaurieDA: Mutation at the Circadian Clock Gene EARLY MATURITY 8 AdaptsDomesticated Barley (Hordeum vulgare) to Short Growing Seasons. PNAS2012, doi:accepted.
Google Scholar
Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE: Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. PNAS. 2011, 108: 16469-16474. 10.1073/pnas.1106212108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J: The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching and promoter analysis. Cold Spring Harb Symp Quant Biol. 2007, 72: 353-363. 10.1101/sqb.2007.72.006.
Article
PubMed
CAS
Google Scholar
Huq E, Tepperman JM, Quail PH: GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. PNAS. 2000, 97: 9789-9794. 10.1073/pnas.170283997.
Article
PubMed
CAS
PubMed Central
Google Scholar