Bonfante P, Anca I-A: Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol. 2009, 63: 363-383.
Article
PubMed
CAS
Google Scholar
Porras-Alfaro A, Bayman P: Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol. 2011, 49: 291-315.
Article
PubMed
CAS
Google Scholar
Berendsen RL, Kalkhove SIC, Lugones LG, Wösten HAB, Bakker PAHM: Germination of Lecanicillium fungicola in the mycosphere of Agaricus bisporus. Environ Microbiol Rep. 2012, 4: 227-233.
Article
PubMed
CAS
Google Scholar
Smith SE, Smith FA: Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 2012, 104: 1-13.
Article
PubMed
Google Scholar
Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J: Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 2011, 469: 58-63.
Article
PubMed
CAS
Google Scholar
Bonfante P, Requena N: Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol. 2011, 14: 451-457.
Article
PubMed
CAS
Google Scholar
Alexander T, Toth R, Meier R, Weber HC: Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular–arbuscular mycorrhizae in grasses. Can J Bot. 1989, 67: 2505-2513.
Article
Google Scholar
Genre A, Ivanov S, Fendrych M, Faccio A, Žárský V, Bisseling T, Bonfante P: Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas. Plant Cell Physiol. 2012, 53: 244-255.
Article
PubMed
CAS
Google Scholar
Pumplin N, Zhang X, Noar RD, Harrison MJ: Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. PNAS. 2012, 109: E665-E672.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H: Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol. 2005, 137: 1283-1301.
Article
PubMed
CAS
PubMed Central
Google Scholar
Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U: Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. PNAS. 2005, 102: 8066-8070.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ: Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J. 2007, 50: 529-544.
Article
PubMed
CAS
Google Scholar
Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L: Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol. 2009, 184: 975-987.
Article
PubMed
CAS
Google Scholar
Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P: Genome‐wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol. 2009, 182: 200-212.
Article
PubMed
CAS
Google Scholar
Hogekamp C, Arndt D, Pereira P, Becker JD, Hohnjec N, Küster H: Laser-microdissection unravels cell-type specific transcription in arbuscular mycorrhizal roots, including CAAT-box TF gene expression correlating with fungal contact and spread. Plant Physiol. 2011, 157: 2023-2043.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F: Arbuscule‐containing and non‐colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J. 2012, 69: 510-528.
Article
PubMed
CAS
Google Scholar
Sanchez L, Weidmann S, Brechenmacher L, Batoux M, Van Tuinen D, Lemanceau P, Gianinazzi S, Gianinazzi-Pearson V: Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol. 2004, 2004: 855-863.
Article
Google Scholar
Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A: Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol. 2004, 108: 95-113.
Article
PubMed
Google Scholar
Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U: Arbuscular mycorrhiza–specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell. 2008, 20: 2989-3005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Agre P, Kozono D: Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett. 2003, 555: 72-78.
Article
PubMed
CAS
Google Scholar
Kaldenhoff R, Fischer M: Aquaporins in plants. Acta Physiologica. 2006, 187: 169-176.
Article
PubMed
CAS
Google Scholar
Forrest KL, Bhave M: Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics. 2007, 7: 263-289.
Article
PubMed
CAS
Google Scholar
Maurel C, Verdoucq L, Luu D-T, Santoni V: Plant Aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008, 59: 595-624.
Article
PubMed
CAS
Google Scholar
Gupta AB, Verma RK, Agarwal V, Vajpai M, Bansal V, Sankararamakrishnan R: MIPModDB: a central resource for the superfamily of major intrinsic proteins. Nucleic Acids Res. 2012, 40: D362-D369.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chaumont F, Moshelion M, Daniels MJ: Regulation of plant aquaporin activity. Biol Cell. 2005, 97: 749-764.
Article
PubMed
CAS
Google Scholar
Ma JF, Yamaji N: Functions and transport of silicon in plants. Cell Mol Life Sci. 2008, 65: 3049-3057.
Article
PubMed
CAS
Google Scholar
Liu Q, Wang H, Zhang Z, Wu J, Feng Y, Zhu Z: Divergence in function and expression of the NOD26-like intrinsic proteins in plants. BMC Genomics. 2009, 10: 313.
Article
PubMed
PubMed Central
Google Scholar
Danielson J, Johanson U: Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol. 2008, 8: 45.
Article
PubMed
PubMed Central
Google Scholar
Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F: Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta. 2009, 1788: 1213-1228.
Article
PubMed
CAS
Google Scholar
Kruse E, Uehlein N, Kaldenhoff R: The aquaporins. Genome Biol. 2006, 7: 206.
Article
PubMed
PubMed Central
Google Scholar
Ruiz-Lozano JM, Aroca R: Symbioses and Stress. 2010, Netherlands: Springer, 357-374. 17
Book
Google Scholar
Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM: Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot. 2012, 109: 1009-1017.
Article
PubMed
PubMed Central
Google Scholar
Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R: Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry. 2007, 68: 122-129.
Article
PubMed
CAS
Google Scholar
Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F: Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J. 2011, 66: 306-317.
Article
PubMed
CAS
Google Scholar
Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ: A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA. 2007, 104: 1720-1725.
Article
PubMed
CAS
PubMed Central
Google Scholar
Neuhäuser B, Dynowski M, Mayer M, Ludewig U: Regulation of NH4+ transport by essential cross talk between amt monomers through the carboxyl tails. Plant Physiol. 2007, 143: 1651-1659.
Article
PubMed
PubMed Central
Google Scholar
Ludewig U, Dynowski M: Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet. Cell Mol Life Sci. 2009, 66: 3161-3175.
Article
PubMed
CAS
Google Scholar
Guttenberger M: Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Planta. 2000, 211: 299-304.
Article
PubMed
CAS
Google Scholar
Liu L-H, Ludewig U, Gassert B, Frommer WB, von Wirén N: Urea Transport by Nitrogen-Regulated Tonoplast Intrinsic Proteins in Arabidopsis. Plant Physiol. 2003, 133: 1220-1228.
Article
PubMed
CAS
PubMed Central
Google Scholar
Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui-Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N, Reinhard A, Siegfart S, Urban M, Kaldenhoff R: Aquaporin tetramer composition modifies the function of tobacco aquaporins. J Biol Chem. 2010, 285: 31253-31260.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bonfante P, Genre A: Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010, 1: 48.
Article
PubMed
Google Scholar
Fortin MG, Morrison NA, Verma DPS: Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucl Acids Res. 1987, 15: 813-824.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu Q, Zhu Z: Functional divergence of the NIP III subgroup proteins involved altered selective constraints and positive selection. BMC Plant Biol. 2010, 10: 256.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B, Martin F, Sakr S, Label P, Julien JL, Gousset-Dupont A, Venisse JS: Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot. 2012, 63: 2217-2230.
Article
PubMed
CAS
Google Scholar
Dietz S, von Bülow J, Beitz E, Nehls U: The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. New Phytol. 2011, 190: 927-940.
Article
PubMed
CAS
Google Scholar
Guenther JF, Roberts DM: Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta. 2000, 210: 741-748.
Article
PubMed
CAS
Google Scholar
Harrison MJ, Dewbre GR, Liu J: A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell Online. 2002, 14: 2413-2429.
Article
CAS
Google Scholar
Kobae Y, Hata S: Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol. 2010, 51: 341-353.
Article
PubMed
CAS
Google Scholar
Pumplin N, Harrison MJ: Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol. 2009, 151: 809-819.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bonfante P: Plant-fungal interactions in mycorrhizas. Encyclopedia of Life Sciences. 2010, UK: John Wiley & Sons, Ltd.
Google Scholar
Mizutani M, Watanabe S, Nakagawa T, Maeshima M: Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol. 2006, 47: 1420-1426.
Article
PubMed
CAS
Google Scholar
Kobae Y, Tamura Y, Takai S, Banba M, Hata S: Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol. 2010, 51: 1411-1415.
Article
PubMed
CAS
Google Scholar
Bonfante P, Perotto S: Tansley Review No. 82. New Phytol. 1995, 130: 3-21.
Article
Google Scholar
Gianinazzi-Pearson V: Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. The Plant Cell Online. 1996, 8: 1871-1883.
Article
Google Scholar
Harrison MJ: Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol. 1999, 50: 361-389.
Article
PubMed
CAS
Google Scholar
Lehto T, Zwiazek J: Ectomycorrhizas and water relations of trees: a review. Mycorrhiza. 2011, 21: 71-90.
Article
PubMed
Google Scholar
Broughton WJ, Dilworth MJ: Control of leghaemoglobin synthesis in snake beans. Biochem J. 1971, 125: 1075-1080.
Article
PubMed
CAS
PubMed Central
Google Scholar
Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P: A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol. 2009, 150: 73-83.
Article
PubMed
CAS
PubMed Central
Google Scholar
Guether M, Volpe V, Balestrini R, Requena N, Wipf D, Bonfante P: LjLHT1.2—a mycorrhiza-inducible plant amino acid transporter from Lotus japonicus. Biol Fertil Soils. 2011, 47: 925-936.
Article
CAS
Google Scholar
Marini AM, Soussi-Boudekou S, Vissers S, Andre B: A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol. 1997, 17: 4282-4293.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bertl A, Kaldenhoff R: Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat. FEBS Lett. 2007, 581: 5413-5417.
Article
PubMed
CAS
Google Scholar
Bertl A, Slayman CL, Gradmann D: Gating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiae. J Membr Biol. 1993, 132: 183-199.
Article
PubMed
CAS
Google Scholar
Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P: Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact. 2007, 20: 1055-1062.
Article
PubMed
CAS
Google Scholar
Yoo S-D, Cho Y-H, Sheen J: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protocols. 2007, 2: 1565-1572.
Article
PubMed
CAS
Google Scholar
Karimi M, Inzé D, Depicker A: GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002, 7: 193-195.
Article
PubMed
CAS
Google Scholar
Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R: Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc Natl Acad Sci USA. 2005, 102: 10375-10380.
Article
PubMed
CAS
PubMed Central
Google Scholar