Thoday J: Location of polygenes. Nature. 1961, 191: 368-370. 10.1038/191368a0.
Article
Google Scholar
Wehrhahn C, Allard R: The detection and measurements of the effects of individual genes involved in the inheritance of a quantitative character in wheat. Genetics. 1965, 51: 109-119.
PubMed
PubMed Central
Google Scholar
Eshed Y, Zamir D: An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics. 1995, 141 (3): 1147-1162.
PubMed
PubMed Central
Google Scholar
Zamir D: Improving plant breeding with exotic genetic libraries. Nat Rev Genet. 2001, 2 (12): 983-989. 10.1038/35103589.
Article
PubMed
Google Scholar
Grandillo S, Tanksley S, Zamir D: Exploitation of natural biodiversity through genomics. Genomics-Assisted Crop Improvement: Genomics Approaches and Platforms. Edited by: Varshney RK, Tuberosa R. 2007, New York: Springer, 121-150. full_text.
Chapter
Google Scholar
Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart CJ, Vries HBD, Effgen S, Vreugdenhil D, Koornneef M: Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics. 2007, 175 (2): 891-905. 10.1534/genetics.106.066423.
Article
PubMed
PubMed Central
Google Scholar
Schmalenbach I, Korber N, Pillen K: Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet. 2008, 117 (7): 1093-1106. 10.1007/s00122-008-0847-7.
Article
PubMed
Google Scholar
Takada T, Mita A, Maeno A, Sakai T, Shitara H, Kikkawa Y, Moriwaki K, Yonekawa H, Shiroishi T: Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits. Genome Res. 2008, 18 (3): 500-508. 10.1101/gr.7175308.
Article
PubMed
PubMed Central
Google Scholar
Doroszuk A, Snoek LB, Fradin E, Riksen J, Kammenga J: A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans. Nucleic Acids Res. 2009, 37 (16): 10.1093/nar/gkp528.
Torjek O, Meyer RC, Zehnsdorf M, Teltow M, Strompen G, Witucka-Wall H, Blacha A, Altmann T: Construction and analysis of 2 reciprocal Arabidopsis introgression line populations. J Hered. 2008, 99 (4): 396-406. 10.1093/jhered/esn014.
Article
PubMed
Google Scholar
Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB: QTL mapping with near-isogenic lines in maize. Theor Appl Genet. 2007, 114 (7): 1211-1228. 10.1007/s00122-007-0512-6.
Article
PubMed
Google Scholar
Saha S, Jenkins JN, Wu JX, McCarty JC, Gutierrez OA, Percy RG, Cantrell RG, Stelly DM: Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits. Genetics. 2006, 172 (3): 1927-1938. 10.1534/genetics.105.053371.
Article
PubMed
PubMed Central
Google Scholar
Stuber CW, Polacco M, Lynn M: Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci. 1999, 39 (6): 1571-1583. 10.2135/cropsci1999.3961571x.
Article
Google Scholar
Ashikari M, Matsuoka M: Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 2006, 11 (7): 344-350. 10.1016/j.tplants.2006.05.008.
Article
PubMed
Google Scholar
Lippman ZB, Semel Y, Zamir D: An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet & Dev. 2007, 17 (6): 545-552. 10.1016/j.gde.2007.07.007.
Article
Google Scholar
Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD: fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science. 2000, 289 (5476): 85-88. 10.1126/science.289.5476.85.
Article
PubMed
Google Scholar
Fridman E, Pleban T, Zamir D: A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA. 2000, 97 (9): 4718-4723. 10.1073/pnas.97.9.4718.
Article
PubMed
PubMed Central
Google Scholar
Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Jesus SG, Doebley J: Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. Am J Bot. 2008, 95 (10): 1240-1253. 10.3732/ajb.0800097.
Article
PubMed
Google Scholar
Goodman MM, Brown WL: Races of corn. Corn and corn improvement 3rd edition. Edited by: Sprague GF, Dudley JW. Madison: American Society of Agronomy; 1988, 33-79.
Google Scholar
Vladutu C, McLaughlin J, Phillips RL: Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics. 1999, 153 (2): 993-1007.
PubMed
PubMed Central
Google Scholar
Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL: Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol. 2002, 48 (5): 601-613. 10.1023/A:1014838024509.
Article
PubMed
Google Scholar
Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler K, Meeley R, Ananiev E, Svitashev S, Bruggemann E, Niu X, Li B, Rafalski A, Tingey SV, Miao G-H, Phillips RL, Tomes D, Tuberosa R: Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA. 2007, 104 (27): 11376-11381. 10.1073/pnas.0704145104.
Article
PubMed
PubMed Central
Google Scholar
Lauter N, Moscou M, Habiger J, Moose S: Quantitative genetic dissection of shoot architecture traits in maize: towards a functional genomics approach. Plant Genome. 2008, 1: 99-110. 10.3835/plantgenome2008.06.0385.
Article
Google Scholar
Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB: Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics. 2010, 184 (3): 799-812. 10.1534/genetics.109.110304.
Article
PubMed
PubMed Central
Google Scholar
Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A: Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics. 2009, 183 (4): 1555-1563. 10.1534/genetics.109.106922.
Article
PubMed
PubMed Central
Google Scholar
Wang CL, Cheng FF, Sun ZH, Tang JH, Wu LC, Ku LX, Chen YH: Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor Appl Genet. 2008, 117 (7): 1129-1139. 10.1007/s00122-008-0851-y.
Article
PubMed
Google Scholar
Neuffer MG, Coe EH, Wessler SR: Mutants of maize. New York: Cold Spring Harbour Laboratory Press; 1997.
Google Scholar
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD: The genetic architecture of maize flowering time. Science. 2009, 325 (5941): 714-718. 10.1126/science.1174276.
Article
PubMed
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, et al: The B73 maize genome: complexity, diversity, and dynamics. Science. 2009, 326 (5956): 1112-1115. 10.1126/science.1178534.
Article
PubMed
Google Scholar
Salvi S, Tuberosa R: To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci. 2005, 10 (6): 297-304. 10.1016/j.tplants.2005.04.008.
Article
PubMed
Google Scholar
Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S: Mapping QTLs regulating morpho-physiological traits and yield in drought-stressed maize: case studies, shortcomings and perspectives. Ann Bot. 2002, 89 (7): 941-963. 10.1093/aob/mcf134.
Article
PubMed
PubMed Central
Google Scholar
Chuck G, Cigan AM, Saeteurn K, Hake S: The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet. 2007, 39 (4): 544-549. 10.1038/ng2001.
Article
PubMed
Google Scholar
Kawakatsu T, Taramino G, Itoh J, Allen J, Sato Y, Hong SK, Yule R, Nagasawa N, Kojima M, Kusaba M, Sakakibara H, Sakai H, Nagato Y: PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice. Plant J. 2009, 58 (6): 1028-1040. 10.1111/j.1365-313X.2009.03841.x.
Article
PubMed
Google Scholar
Shimizu-Sato S, Tanaka M, Mori H: Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol. 2009, 69 (4): 429-435. 10.1007/s11103-008-9416-3.
Article
PubMed
Google Scholar
Ragot M, Sisco PH, Hoisington DA, Stuber CW: Molecular-marker-mediated characterization of favorable exotic alleles at quantitative trait loci in maize. Crop Sci. 1995, 35 (5): 1306-1315. 10.2135/cropsci1995.0011183X003500050009x.
Article
Google Scholar
Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter M, Doebley JF, Pe ME, Schmidt RJ: The role of barren stalk1 in the architecture of maize. Nature. 2004, 432 (7017): 630-635. 10.1038/nature03148.
Article
PubMed
Google Scholar
Shaver D: Genetics and breeding of maize with extra leaves above the ear. 38th Annual Corn and Sorghum Research Conference: 7-8 Dec. 1983. Washington, DC: American Seed Trade Association; 1983,161-180.
Google Scholar
Winkler RG, Helentjaris T: The maize Dwarf3 gene encodes a cytochrome p450-mediated early step in gibberellin biosynthesis. Plant Cell. 1995, 7 (8): 1307-1317. 10.1105/tpc.7.8.1307.
Article
PubMed
PubMed Central
Google Scholar
Melchinger AE, Piepho HP, Utz HF, Muminovic J, Wegenast T, Torjek O, Altmann T, Kusterer B: Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics. 2007, 177 (3): 1827-1837. 10.1534/genetics.107.080564.
Article
PubMed
PubMed Central
Google Scholar
Reif JC, Kusterer B, Piepho HP, Meyer RC, Altmann T, Schon CC, Melchinger AE: Unraveling epistasis with triple testcross progenies of near-isogenic lines. Genetics. 2009, 181 (1): 247-257. 10.1534/genetics.108.093047.
Article
PubMed
PubMed Central
Google Scholar
Laurie DA, Bennett MD: Nuclear-DNA content in the genera Zea and Sorghum - intergeneric, interspecific and intraspecific variation. Heredity. 1985, 55: 307-313. 10.1038/hdy.1985.112.
Article
Google Scholar
Rayburn AL, Price HJ, Smith JD, Gold JR: C-band heterochromatin and DNA content in Zea mays. Am J Bot. 1985, 72 (10): 1610-1617. 10.2307/2443312.
Article
Google Scholar
Rayburn AL, Dudley JW, Biradar DP: Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize. Plant Breed. 1994, 112 (4): 318-322. 10.1111/j.1439-0523.1994.tb00690.x.
Article
Google Scholar
Dawe R: Maize centromeres and knobs (neocentromeres). Maize Handbook Volume II Genetics and Genomics. Edited by: Bennetzen J, Hake S. New York: Springer; 2009.
Google Scholar
Chughtai SR, Steffensen DM: Heterochromatic knob composition of commercial inbred lines of maize. Maydica. 1987, 32 (3): 171-187.
Google Scholar
Grant WF, Owens ET: Zea mays assays of chemical/radiation genotoxicity for the study of environmental mutagens. Mutat Res Rev Mutat Res. 2006, 613 (1): 17-64.
Article
Google Scholar
Ananiev EV, Phillips RL, Rines HW: Complex structure of knob DNA on maize chromosome 9: Retrotransposon invasion into heterochromatin. Genetics. 1998, 149 (4): 2025-2037.
PubMed
PubMed Central
Google Scholar
Salvi S, Castelletti S, Tuberosa R: An updated consensus map for flowering time QTLs in maize. Maydica. 2009, 54: 501-512.
Google Scholar
Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A: Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics. 2004, 168 (4): 2169-2185. 10.1534/genetics.104.032375.
Article
PubMed
PubMed Central
Google Scholar
Danilevskaya ON, Meng X, Hou ZL, Ananiev EV, Simmons CR: A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 2008, 146 (1): 250-264. 10.1104/pp.107.109538.
Article
PubMed
PubMed Central
Google Scholar
Lauter N, Kampani A, Carlson S, Goebel M, Moose SP: microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA. 2005, 102 (26): 9412-9417. 10.1073/pnas.0503927102.
Article
PubMed
PubMed Central
Google Scholar
Pressoir G, Brown PJ, Zhu WY, Upadyayula N, Rocheford T, Buckler ES, Kresovich S: Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2. Plant J. 2009, 58 (4): 618-628. 10.1111/j.1365-313X.2009.03802.x.
Article
PubMed
Google Scholar
Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A: Key impact of Vgt1 on flowering time adaptation in maize: Evidence from association mapping and ecogeographical information. Genetics. 2008, 178 (4): 2433-2437. 10.1534/genetics.107.084830.
Article
PubMed
PubMed Central
Google Scholar
Tracy WF, Whitt SR, Buckler ES: Recurrent mutation and genome evolution: example of Sugary1 and the origin of sweet maize. Crop Sci. 2006, 46 (S1): S-49-S-54. 10.2135/cropsci2006-03-0149tpg.
Google Scholar
Durand E, Tenaillon M, Ridel C, Coubriche D, Jamin P, Jouanne S, Ressayre A, Charcosset A, Dillmann C: Standing variation and new mutations both contribute to a fast response to selection for flowering time in maize inbreds. BMC Evol Biol. 2010, 10: 2-10.1186/1471-2148-10-2.
Article
PubMed
PubMed Central
Google Scholar
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A: Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet. 2005, 37 (9): 997-1002. 10.1038/ng1615.
Article
PubMed
Google Scholar
Wang QH, Dooner HK: Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA. 2006, 103 (47): 17644-17649. 10.1073/pnas.0603080103.
Article
PubMed
PubMed Central
Google Scholar
Vladutu CI, Phillips RL: Spontaneous activation of transposable elements following an interracial cross in maize. Maize Genetics Cooperation Newsletter. 1998, 72: 70-71.
Google Scholar
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J: A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA. 2002, 99 (9): 6080-6084. 10.1073/pnas.052125199.
Article
PubMed
PubMed Central
Google Scholar
Fritz GJ: New dates and data on early agriculture - The legacy of complex hunter-gatherers. Ann Miss Bot Gard. 1995, 82 (1): 3-15. 10.2307/2399975.
Article
Google Scholar
Byers D: Review of "The Native Americans: Prehistory and Ethnology of the North American Indians" by Spencer RF and Jennings JD. Am Antiquity. 1966, 31: 582-584. 10.2307/2694395.
Article
Google Scholar
Gerdes JT, Behr CF, Coors JG, Tracy WF: Compilation of North American Maize Breeding Germplasm. Edited by: Tracy WF, Coors JG, Geadelmann JL. Madison: Crop Science Society of America; 1993.
Salvi S, Phillips RL, Tuberosa R: Development of PCR-based assays for allelic discrimination in maize by using the 5'-nuclease procedure. Mol Breed. 2001, 8 (2): 169-176. 10.1023/A:1013338512484.
Article
Google Scholar
Van Ooijen J, Voorrips R: Join Map® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands; 2001.
Google Scholar
Dwyer LM, Stewart DW, Carrigan L, Ma BL, Neave P, Balchin D: Guidelines for comparisons among different maize maturity rating systems. Agron J. 1999, 91 (6): 946-949. 10.2134/agronj1999.916946x.
Article
Google Scholar
Utz HF: PLABSTAT: a computer program for the statistical analysis of plant breeding experiments. University of Hohenheim, Stuttgart, Germany: 1998, Institute of Plant Breeding, Seed Science and Population Genetics
Utz HF, Melchinger AE: PLABQTL: A program for composite interval mapping of QTL. J Quant Trait Loci. 1996, 2 (1):
Voorrips RE: MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered. 2002, 93 (1): 77-78. 10.1093/jhered/93.1.77.
Article
PubMed
Google Scholar
McCouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T: Report on QTL nomenclature. Rice Genetics Newsletter. 1997, 14: 11-13.
Google Scholar