Kaul MLH: Male sterility in higher plants. Berlin: Springer; 1988.
Book
Google Scholar
Tsunewaki K: Genome-plasmon interactions in wheat. Jpn J Genet. 1993, 68: 1-34. 10.1266/jjg.68.1.
Article
CAS
Google Scholar
Tsunewaki K, Wang GH, Matsuoka Y: Plasmon analysis of Triticum (wheat) and Aegilops. 1. Production of alloplasmic common wheats and their fertilities. Genes Genet Syst. 1996, 71: 293-311. 10.1266/ggs.71.293.
Article
PubMed
CAS
Google Scholar
Schnable PS, Wise RP: The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 1998, 3: 175-180. 10.1016/S1360-1385(98)01235-7.
Article
Google Scholar
Zubko MK, Zubko EI, Patkovsky YV, Khvedynich OA, Fisahn J, Gleba YY, Schieder O: Novel 'homeotic' CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia. J Exp Bot. 1996, 47: 1101-1110. 10.1093/jxb/47.8.1101.
Article
CAS
Google Scholar
Murai K, Takumi S, Koga H, Ogihara Y: Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J. 2002, 29: 169-181. 10.1046/j.0960-7412.2001.01203.x.
Article
PubMed
Google Scholar
Linke B, Nothnagel T, Böner T: Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J. 2003, 34: 27-37. 10.1046/j.1365-313X.2003.01703.x.
Article
PubMed
CAS
Google Scholar
Teixeira RT, Farbos I, Glimelius K: Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus. Plant J. 2005, 42: 731-742. 10.1111/j.1365-313X.2005.02407.x.
Article
PubMed
CAS
Google Scholar
Fitter JT, Thomas MR, Niu C, Rose RJ: Investigation of Nicotiana tabacum (+) N. suaveolens cybrids with carpelloid stamens. J Plant Physiol. 2005, 162: 225-235. 10.1016/j.jplph.2004.02.006.
Article
PubMed
CAS
Google Scholar
Murai K, Tsunewaki K: Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica. 1993, 67: 41-48. 10.1007/BF00022723.
Article
Google Scholar
Murai K: Genetic analysis of fertility restoration against photoperiod-sensitive cytoplasmic male sterility in Triticum aestivum cv. Norin 61. Plant Breed. 1997, 116: 592-594. 10.1111/j.1439-0523.1997.tb02196.x.
Article
Google Scholar
Zhu Y, Saraike T, Yamamoto Y, Hagita H, Takumi S, Murai K: orf260cra, a novel mitochondrial gene, is associated with the homeotic transformation of stamens into pistil-like structures (pistillody) in alloplasmic wheat. Plant Cell Physiol. 2008, 49: 1723-1733. 10.1093/pcp/pcn143.
Article
PubMed
CAS
Google Scholar
Murai K, Tsunewaki K: Genetic analysis on the fertility restoration by Triticum aestivum cv. Chinese Spring against photoperiod-sensitive cytoplasmic male sterility. Jpn J Genet. 1994, 69: 195-202. 10.1266/jjg.69.195.
Article
Google Scholar
Hama E, Takumi S, Ogihara Y, Murai K: Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta. 2004, 218: 712-720. 10.1007/s00425-003-1157-6.
Article
PubMed
CAS
Google Scholar
Meguro A, Takumi S, Ogihara Y, Murai K: WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod. 2003, 15: 221-230.
CAS
Google Scholar
Mizumoto K, Hatano H, Hirabayashi C, Murai K, Takumi S: Altered expression of wheat AINTEGUMENTA homolog, WANT-1, in pistil and pistil-like transformed stamen of an alloplasmic line with Aegilops crassa cytoplasm. Dev Genes Evol. 2009, 219: 175-187. 10.1007/s00427-009-0275-y.
Article
PubMed
CAS
Google Scholar
Riechmann JL, Meyerowitz EM: MADS domain proteins in plant development. Biol Chem. 1997, 378: 1079-1101. 10.1515/bchm.1997.378.10.1079.
PubMed
CAS
Google Scholar
Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJM, van Tunen AJ: A novel class of MADS box genes is involved in ovule development. Plant Cell. 1995, 7: 1569-1582. 10.1105/tpc.7.10.1569.
Article
PubMed
CAS
PubMed Central
Google Scholar
Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ: The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell. 1995, 7: 1859-1868. 10.1105/tpc.7.11.1859.
Article
PubMed
CAS
PubMed Central
Google Scholar
Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L: MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell. 2003, 15: 2603-2611. 10.1105/tpc.015123.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L: The TRANSPARENT TESTA 16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell. 2002, 14: 2463-2479. 10.1105/tpc.004127.
Article
PubMed
CAS
PubMed Central
Google Scholar
de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent GC, Immink RGH: A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J. 2006, 47: 934-946. 10.1111/j.1365-313X.2006.02846.x.
Article
PubMed
CAS
Google Scholar
Yamada K, Saraike T, Shitsukawa N, Takumi S, Murai K: Class D and Bsister MADS-box genes are associated with the ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Mol Biol. 2009, 71: 1-14. 10.1007/s11103-009-9504-z.
Article
PubMed
CAS
Google Scholar
Schneitz K: The molecular and genetic control of ovule development. Curr Opi Plant Biol. 1999, 2: 13-17. 10.1016/S1369-5266(99)80003-X.
Article
CAS
Google Scholar
Baker SC, Robinson-Beers K, Villanueva JM, Gaiser JC, Gasser CS: Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics. 1997, 145: 1109-1124.
PubMed
CAS
PubMed Central
Google Scholar
Schneitz K, Hülskamp M, Kopczak SD, Pruitt RE: Dissection of sexual organ ontogenesis: a genetic analysis of ovule development. Development. 1997, 124: 1367-1376.27.
PubMed
CAS
Google Scholar
Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fishcher RL: The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell. 1995, 83: 735-742. 10.1016/0092-8674(95)90186-8.
Article
PubMed
CAS
Google Scholar
Western T, Haughn G: BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana. Plant J. 1999, 18: 329-336. 10.1046/j.1365-313X.1999.00448.x.
Article
PubMed
CAS
Google Scholar
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M: An SNP caused loss of seed shattering during rice domestication. Science. 2006, 312: 1392-1396. 10.1126/science.1126410.
Article
PubMed
CAS
Google Scholar
Kumar R, Kushakappa K, Godt D, Oidkowich MS, Pastorelli S, Hepworth SR, Haughn GW: The Arabidopsis BEL1-LIKE HOMEODOMAIN protein SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. Plant Cell. 2007, 19: 2719-2735. 10.1105/tpc.106.048769.
Article
PubMed
CAS
PubMed Central
Google Scholar
Müller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W: In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function. Plant J. 2001, 27: 13-23.
Article
PubMed
Google Scholar
Bryne ME, Groover AT, Fontana JR, Martienssen RA: Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development. 2003, 130: 3941-3950. 10.1242/dev.00620.
Article
Google Scholar
Smith HM, Hake S: The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell. 2003, 15: 1717-1727. 10.1105/tpc.012856.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, Modrusan Z, Crosby WL, Haughn GW: The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell. 2001, 13: 2455-2470. 10.1105/tpc.13.11.2455.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mukherjee K, Brocchieri L, Bürglin TR: A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol. 2009, 26: 2775-2794. 10.1093/molbev/msp201.
Article
PubMed
CAS
PubMed Central
Google Scholar
Murai K, Ogihara Y, Tsunewaki K: An EMS-induced wheat mutant restoring fertility against photoperiod-sensitive cytoplasmic male sterility. Plant Breed. 1995, 114: 205-209. 10.1111/j.1439-0523.1995.tb00794.x.
Article
CAS
Google Scholar
Sears ER: Nullisomic-tetrasomic combinations in hexaploid wheat. Chromosome manipulation and plant genetics. Edited by: Riley R, Lewis KR. Edinburgh: Oliver and Boyd; 1966, 29-45.
Chapter
Google Scholar
Karlin S, Altschul SF: Applications and statistics for multiple high-scoring segments in molecular sequences. Proc Natl Acad Sci USA. 1993, 90: 5873-5877. 10.1073/pnas.90.12.5873.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sneath PHA, Sokal RR: Numerical Taxonomy. Freeman: San Francisco; 1973.
Google Scholar
Takumi S, Kosugi T, Murai K, Mori N, Nakamura C: Molecular cloning of three homoeologous cDNAs encoding orthologues of maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat. Gene. 2000, 249: 171-181. 10.1016/S0378-1119(00)00164-5.
Article
PubMed
CAS
Google Scholar
Mizumoto K, Murai K, Nakamura C, Takumi S: Preferential expression of a HLP homolog encoding a mitochondrial L14 ribosomal protein in stamens of common wheat. Gene. 2004, 343: 281-289. 10.1016/j.gene.2004.09.005.
Article
PubMed
CAS
Google Scholar
Morimoto R, Kosugi T, Nakamura C, Takumi S: Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol. 2005, 57: 907-924. 10.1007/s11103-005-3247-2.
Article
PubMed
CAS
Google Scholar
Morimoto R, Nishioka E, Murai K, Takumi S: Functional conservation of wheat orthologs of maize rough sheath1 and rough sheath2 genes. Plant Mol Biol. 2009, 69: 273-285. 10.1007/s11103-008-9422-5.
Article
PubMed
CAS
Google Scholar
Ishida Y, Takumi S: Cloning of a wheat cDNA encoding an ortholog of the maize LIGULELESS4 homeobox protein. Wheat Inf Serv. 2009, 107: 9-12.
Google Scholar
Saraike T, Shitsukawa N, Yamamoto Y, Hagita H, Iwasaki Y, Takumi S, Murai K: Identification of a protein kinase gene associated with pistillody, homeotic transformation of stamens into pistil-like structures, in alloplasmic wheat. Planta. 2007, 227: 211-221. 10.1007/s00425-007-0608-x.
Article
PubMed
CAS
Google Scholar
Quaedvlieg N, Dockx J, Rook F, Weisbeek P, Smeekens S: The homeobox gene ATH1 of Arabidopsis is depressed in the photomorphogenic mutants cop1 and det1. Plant Cell. 1995, 7: 117-129. 10.1105/tpc.7.1.117.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kerstetter RA, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S: Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell. 1994, 6: 1877-1887. 10.1105/tpc.6.12.1877.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kerstetter RA, Laudencia-Chigcuanco D, Smith LG, Hake S: Loss-of-function mutations in the homeobox gene, knotted1, are defective in shoot meristem maintenance. Development. 1997, 124: 3045-3054.
PubMed
CAS
Google Scholar
Bauer P, Lubkowitz M, Tyers R, Nemoto K, Meeley RB, Goff SA, Freeling M: Regulation and a conserved intron sequence of liguleless3/4 knox class-I homeobox genes in grasses. Planta. 2004, 219: 359-368. 10.1007/s00425-004-1233-6.
Article
PubMed
CAS
Google Scholar
Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M: Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J. 2009, 58: 641-654. 10.1111/j.1365-313X.2009.03809.x.
Article
PubMed
CAS
Google Scholar
Jackson D, Veit B, Hake S: Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development. 1994, 120: 405-413.
CAS
Google Scholar
Sentoku N, Sato Y, Kurata N, Ito Y, Kitano H, Matsuoka M: Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell. 1999, 11: 1651-1663. 10.1105/tpc.11.9.1651.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bürglin TR: The PBC domain contains a MEINOX domain: Coevolution of Hox and TALE homeobox genes?. Dev Genes Evol. 1998, 208: 113-116.
Article
PubMed
Google Scholar
Mann RS, Affolter M: Hox proteins meet more partners. Curr Opin Genet Dev. 1998, 8: 423-429. 10.1016/S0959-437X(98)80113-5.
Article
PubMed
CAS
Google Scholar
Cole M, Nolte C, Werr W: Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acid Res. 2006, 34: 1281-1292. 10.1093/nar/gkl016.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smith HM, Boschke I, Hake S: Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA. 2002, 99: 9579-9584. 10.1073/pnas.092271599.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ: The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet. 2010, 121: 705-715. 10.1007/s00122-010-1342-5.
Article
PubMed
CAS
Google Scholar
Pagnussat GC, Yu HJ, Sundaresan V: Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell. 2007, 19: 3578-3592. 10.1105/tpc.107.054890.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hackbusch J, Richter K, Müller J, Salamini F, Uhrig JF: A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA. 2005, 102: 4908-4912. 10.1073/pnas.0501181102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Roeder AHK, Ferrándiz C, Yanofsky MF: The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol. 2003, 13: 1630-1635. 10.1016/j.cub.2003.08.027.
Article
PubMed
CAS
Google Scholar
Gómez-Mena C, Sablowski R: ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell. 2008, 20: 2059-2072.
Article
PubMed
PubMed Central
Google Scholar
Gómez-Mena C, de Folter S, Costa MMR, Angenent GC, Sablowski R: Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development. 2005, 132: 429-438.
Article
PubMed
Google Scholar
Carlsson J, Lagercrantz U, Sundström J, Teizeira R, Wellmer F, Meyerowitz EM, Gilmelius K: Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flower. Plant J. 2007, 49: 452-462. 10.1111/j.1365-313X.2006.02975.x.
Article
PubMed
CAS
Google Scholar
Hill JP, Lord EM: Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can J Bot. 1989, 67: 2922-2936. 10.1139/b89-375.
Article
Google Scholar
Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y: SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development. 2003, 130: 705-718. 10.1242/dev.00294.
Article
PubMed
CAS
Google Scholar
Ishikawa M, Ohmori Y, Tanaka W, Hirabayashi C, Murai K, Ogihara Y, Yamaguchi T, Hirano H: The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Gene Genet Syst. 2009, 84: 137-146. 10.1266/ggs.84.137.
Article
CAS
Google Scholar