Hou S, Yang Y, Zhou J-M: The multilevel and dynamic interplay between plant and pathogen. Plant Signal Behav. 2009, 4: 283-293. 10.4161/psb.4.4.8155.
Article
PubMed
CAS
PubMed Central
Google Scholar
Buttner D, Bonas U: Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Curr Opin Microbiol. 2006, 9: 193-200. 10.1016/j.mib.2006.02.006.
Article
PubMed
Google Scholar
Jones JD, Dangl JL: The plant immune system. Nature. 2006, 444: 323-329. 10.1038/nature05286.
Article
PubMed
CAS
Google Scholar
Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV: Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science. 1992, 257: 85-88. 10.1126/science.1621099.
Article
PubMed
CAS
Google Scholar
Keen NT, Tamaki S, Kobayashi D, Gerhold D, Stayton M, Shen H, Gold S, Lorang J, Thordal-Christensen H, Dahlbeck D, et al: Bacteria expressing avirulence Gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant Microbe Interact. 1990, 3: 112-121.
Article
CAS
Google Scholar
Agrios GN: Plant Pathology. Fifth revised London: Elsevier Academic Press, 2005.
Google Scholar
Benitez T, Rincon AM, Limon MC, Codon AC: Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004, 7: 249-260.
PubMed
CAS
Google Scholar
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M: Trichoderma species-opportunistic, avirulent plant symbionts. Nature Rev Microbiol. 2004, 2: 43-56. 10.1038/nrmicro797.
Article
CAS
Google Scholar
Shoresh M, Harman GE, Mastouri F: Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol. 2010, 48: 1-23. 10.1146/annurev-phyto-073009-114450.
Article
Google Scholar
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M: Trichoderma-plant-pathogen interactions. Soil Biol Biochem. 2008, 40: 1-10. 10.1016/j.soilbio.2007.07.002.
Article
CAS
Google Scholar
Hanson LE, Howell CR: Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathol. 2004, 94: 171-176. 10.1094/PHYTO.2004.94.2.171.
Article
CAS
Google Scholar
Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM: A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma viride is required for induced systemic resistance in maize. Plant Physiol. 2007, 145: 875-889. 10.1104/pp.107.103689.
Article
PubMed
CAS
PubMed Central
Google Scholar
Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C: The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecular Plant Pathology. 2007, 8: 737-746. 10.1111/j.1364-3703.2007.00430.x.
Article
PubMed
CAS
Google Scholar
Chen F, D'Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E: An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. 2003, 36: 577-588. 10.1046/j.1365-313X.2003.01902.x.
Article
PubMed
CAS
Google Scholar
Engelberth J, Koch T, Schuler G, Bachmann N, Rechtenbach J, Boland W: Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 2001, 125: 369-377. 10.1104/pp.125.1.369.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maischak H, Zimmermann MR, Felle HH, Boland W, Mithöfer A: Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav. 2010, 5: 988-990.
Article
PubMed
PubMed Central
Google Scholar
Rippa S, Eid M, Formaggio F, Toniolo C, Beven L: Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana. Chembiochem. 2010, 11: 2042-2049. 10.1002/cbic.201000262.
Article
PubMed
CAS
Google Scholar
Krause C, Kirschbaum J, Jung G, Bruckner H: Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. J Pept Sci. 2006, 12: 321-327. 10.1002/psc.728.
Article
PubMed
CAS
Google Scholar
Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vagvolgyi C: Peptaibols and related peptaibiotics of Trichoderma. A review. Acta Microbiol Immunol Hung. 2005, 52: 137-168. 10.1556/AMicr.52.2005.2.2.
Article
PubMed
CAS
Google Scholar
Montesinos E: Antimicrobial peptides and plant disease control. Fems Microbiol Lett. 2007, 270: 1-11. 10.1111/j.1574-6968.2007.00683.x.
Article
PubMed
CAS
Google Scholar
Cafiso DS: Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct. 1994, 23: 141-165. 10.1146/annurev.bb.23.060194.001041.
Article
PubMed
CAS
Google Scholar
Leitgeb B, Szekeres A, Manczinger L, Vagvolgyi C, Kredics L: The history of alamethicin: A review of the most extensively studied peptaibol. Chem Biodivers. 2007, 4: 1027-1051. 10.1002/cbdv.200790095.
Article
PubMed
CAS
Google Scholar
Meyer CE, Reusser F: A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia. 1967, 23: 85-86. 10.1007/BF02135929.
Article
PubMed
CAS
Google Scholar
Jen WC, Jones GA, Brewer D, Parkinson VO, Taylor A: The antibacterial activity of alamethicins and zervamicins. J Appl Bacteriol. 1987, 63: 293-298.
Article
PubMed
CAS
Google Scholar
Duclohier H, Wroblewski H: Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues. J Membr Biol. 2001, 184: 1-12. 10.1007/s00232-001-0077-2.
Article
PubMed
CAS
Google Scholar
Matic S, Geisler DA, Møller IM, Widell S, Rasmusson AG: Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells. Biochem J. 2005, 389: 695-704. 10.1042/BJ20050433.
Article
PubMed
CAS
PubMed Central
Google Scholar
Boheim G: Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974, 19: 277-303. 10.1007/BF01869983.
Article
PubMed
CAS
Google Scholar
Johansson FI, Michalecka AM, Møller IM, Rasmusson AG: Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria. Biochem J. 2004, 380: 193-202. 10.1042/BJ20031969.
Article
PubMed
PubMed Central
Google Scholar
Aguilella VM, Bezrukov SM: Alamethicin channel conductance modified by lipid charge. Eur Biophys J. 2001, 30: 233-241. 10.1007/s002490100145.
Article
PubMed
CAS
Google Scholar
Bezrukov SM, Rand RP, Vodyanoy I, Parsegian VA: Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge. Faraday Disc. 1998, 173-183.
Google Scholar
Heller WT, He K, Ludtke SJ, Harroun TA, Huang HW: Effect of changing the size of lipid headgroup on peptide insertion into membranes. Biophys J. 1997, 73: 239-244. 10.1016/S0006-3495(97)78064-0.
Article
PubMed
CAS
PubMed Central
Google Scholar
Aidemark M, Andersson CJ, Rasmusson AG, Widell S: Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells. BMC Plant Biol. 2009, 9: 27-10.1186/1471-2229-9-27.
Article
PubMed
PubMed Central
Google Scholar
Beldman G, Searle-Van Leeuwen MF, Rombouts FM, Voragen FG: The cellulase of Trichoderma viride. Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and β-glucosidases. Eur J Biochem. 1985, 146: 301-308. 10.1111/j.1432-1033.1985.tb08653.x.
Article
PubMed
CAS
Google Scholar
Rapp P, Knobloch U, Wagner F: Repression of endo-1,4-β-glucanase formation in Penicillium janthinellum and product inhibition of Its 1,4-β-glucanases and cellobiases. J Bacteriol. 1982, 149: 783-786.
PubMed
CAS
PubMed Central
Google Scholar
Woodward J, Wiseman A: Fungal and other β-D-glucosidases - Their properties and applications. Enzyme Microb Technol. 1982, 4: 73-79. 10.1016/0141-0229(82)90084-9.
Article
CAS
Google Scholar
Bissett F, Sternberg D: Immobilization of Aspergillus β-glucosidase on chitosan. Appl Environ Microbiol. 1978, 35: 750-755.
PubMed
CAS
PubMed Central
Google Scholar
Gong CS, Ladisch MR, Tsao GT: Cellobiase from Trichoderma viride: purification, properties, kinetics, and mechanism. Biotechnol Bioeng. 1977, 19: 959-981. 10.1002/bit.260190703.
Article
PubMed
CAS
Google Scholar
Ober ES, Sharp RE: Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation. J Exp Bot. 2003, 54: 813-824. 10.1093/jxb/erg060.
Article
PubMed
CAS
Google Scholar
Vanlerberghe GC, Mcintosh L: Mitochondrial electron-transport regulation of nuclear gene-expression - Studies with the alternative oxidase gene of tobacco. Plant Physiol. 1994, 105: 867-874. 10.1104/pp.105.3.867.
Article
PubMed
CAS
PubMed Central
Google Scholar
Van Wees SCM, Van der Ent S, Pieterse CMJ: Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol. 2008, 11: 443-448. 10.1016/j.pbi.2008.05.005.
Article
PubMed
CAS
Google Scholar
Van der Ent S, Van Wees SC, Pieterse CM: Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochem. 2009, 70: 1581-1588. 10.1016/j.phytochem.2009.06.009.
Article
CAS
Google Scholar
Schirmböck M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP: Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol. 1994, 60: 4364-4370.
PubMed
PubMed Central
Google Scholar
Mialoundama AS, Heintz D, Debayle D, Rahier A, Camara B, Bouvier F: Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol. 2009, 150: 1556-1566. 10.1104/pp.109.138420.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ma CJ: Cellulase elicitor induced accumulation of capsidiol in Capsicum annuum L. suspension cultures. Biotechnol Lett. 2008, 30: 961-965. 10.1007/s10529-007-9624-y.
Article
PubMed
CAS
Google Scholar
Moreau RA, Preisig CL: Lipid changes in tobacco cell suspensions following treatment with cellulase elicitor. Physiol Plant. 1993, 87: 7-13. 10.1111/j.1399-3054.1993.tb08783.x.
Article
CAS
Google Scholar
Piel J, Atzorn R, Gabler R, Kuhnemann F, Boland W: Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade. FEBS Lett. 1997, 416: 143-148. 10.1016/S0014-5793(97)01169-1.
Article
PubMed
CAS
Google Scholar
Lotan T, Fluhr R: Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction. Plant Physiol. 1990, 93: 811-817. 10.1104/pp.93.2.811.
Article
PubMed
CAS
PubMed Central
Google Scholar
Belien T, Van Campenhout S, Robben J, Volckaert G: Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems?. Mol Plant Microbe Interact. 2006, 19: 1072-1081. 10.1094/MPMI-19-1072.
Article
PubMed
CAS
Google Scholar
Enkerli J, Felix G, Boller T: The enzymatic activity of fungal xylanase is not necessary for its elicitor activity. Plant Physiol. 1999, 121: 391-397. 10.1104/pp.121.2.391.
Article
PubMed
CAS
PubMed Central
Google Scholar
Iriti M, Faoro F: Chitosan as a MAMP, searching for a PRR. Plant Signal Behav. 2009, 4: 66-68. 10.4161/psb.4.1.7408.
Article
PubMed
CAS
PubMed Central
Google Scholar
Felix G, Duran JD, Volko S, Boller T: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 1999, 18: 265-276. 10.1046/j.1365-313X.1999.00265.x.
Article
PubMed
CAS
Google Scholar
Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell. 2004, 16: 3496-3507. 10.1105/tpc.104.026765.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bradley DJ, Kjellbom P, Lamb CJ: Elicitor-induced and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein - a novel, rapid defense response. Cell. 1992, 70: 21-30. 10.1016/0092-8674(92)90530-P.
Article
PubMed
CAS
Google Scholar
Carden DE, Felle HH: The mode of action of cell wall-degrading enzymes and their interference with Nod factor signalling in Medicago sativa root hairs. Planta. 2003, 216: 993-1002.
PubMed
CAS
Google Scholar
Nicholls DG, Ferguson SJ: Bioenergetics 3. Academic Press, London:2002.
Google Scholar
Aziz A, Gauthier A, Bezler A, Poinssot B, Joubert JM, Pugin A, Heyraud A, Baillieul F: Elicitor and resistance-inducing activities of β-1,4 cellodextrins in grapevine, comparison with β-1,3 glucans and α-1,4 oligogalacturonides. J Exp Bot. 2007, 58: 1463-1472. 10.1093/jxb/erm008.
Article
PubMed
CAS
Google Scholar
Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM: Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol. 2008, 18: 730-734. 10.1016/j.cub.2008.04.039.
Article
PubMed
CAS
Google Scholar
Monshausen GB, Gilroy S: The exploring root - root growth responses to local environmental conditions. Curr Opin Plant Biol. 2009, 12: 766-772. 10.1016/j.pbi.2009.08.002.
Article
PubMed
CAS
Google Scholar
Passaquet C, Teodorescuionescu N, Zuilyfodil Y, Thi ATP: Changes in fatty acid and lipid content in callus and protoplasts of Parthenocissus tricuspidata and Petunia hybrida during culture. Physiol Plant. 1986, 67: 211-216. 10.1111/j.1399-3054.1986.tb02445.x.
Article
CAS
Google Scholar
Kesselmeier J, Eichenberger W, Urban B: Sterols and sterylglycosides of oats (Avena sativa). Distribution in the leaf tissue and medium-induced glycosylation of sterols during protoplast isolation. Physiol Plant. 1987, 610-616. 10.1111/j.1399-3054.1987.tb04313.x.
Google Scholar
Hoischen C, Gura K, Luge C, Gumpert J: Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form. J Bacteriol. 1997, 179: 3430-3436.
PubMed
CAS
PubMed Central
Google Scholar
Thippeswamy HS, Sood SK, Venkateswarlu R, Raj I: Membranes of five-fold alamethicin-resistant Staphylococcus aureus, Enterococcus faecalis and Bacillus cereus show decreased interactions with alamethicin due to changes in membrane fluidity and surface charge. Ann Microbiol. 2009, 59: 593-601. 10.1007/BF03175151.
Article
CAS
Google Scholar
Kim H, Lee BJ, Lee MH, Hong SG, Ryu PD: Mechanisms of selective antimicrobial activity of Gaegurin 4. Korean J Physiol Pha. 2009, 13: 39-47. 10.4196/kjpp.2009.13.1.39.
Article
CAS
Google Scholar
Latorre R, Donovan JJ: Modulation of alamethicin-induced conductance by membrane composition. Acta Physiol Scand. 1980, 37-45. Suppl 481
Stankowski S, Schwarz UD, Schwarz G: Voltage-dependent pore activity of the peptide alamethicin correlated with incorporation in the membrane: salt and cholesterol effects. Biochim Biophys Acta. 1988, 941: 11-18. 10.1016/0005-2736(88)90208-8.
Article
PubMed
CAS
Google Scholar
Krasilnikov OV, Merzlyak PG, Lima VL, Zitzer AO, Valeva A, Yuldasheva LN: Pore formation by Vibrio cholerae cytolysin requires cholesterol in both monolayers of the target membrane. Biochimie. 2007, 89: 271-277. 10.1016/j.biochi.2006.12.003.
Article
PubMed
CAS
Google Scholar
Sato H, Feix JB: Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophys Acta. 2006, 1758: 1245-1256. 10.1016/j.bbamem.2006.02.021.
Article
PubMed
CAS
Google Scholar
Berglund AH, Larsson KE, Liljenberg CS: Permeability behaviour of lipid vesicles prepared from plant plasma membranes--impact of compositional changes. Biochim Biophys Acta. 2004, 1682: 11-17.
Article
PubMed
CAS
Google Scholar
Pedroso N, Matias AC, Cyrne L, Antunes F, Borges C, Malho R, de Almeida RF, Herrero E, Marinho HS: Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae. Free Rad Biol Med. 2009, 46: 289-298. 10.1016/j.freeradbiomed.2008.10.039.
Article
PubMed
CAS
Google Scholar
Chiriac R, Luchian T: pH modulation of transport properties of alamethicin oligomers inserted in zwitterionic-based artificial lipid membranes. Biophys Chem. 2007, 130: 139-147. 10.1016/j.bpc.2007.08.009.
Article
PubMed
CAS
Google Scholar
Alkasrawi M, Eriksson T, Börjesson J, Wingren A, Galbe M, Tjerneld F, Zacchi G: The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb Technol. 2003, 33: 71-78. 10.1016/S0141-0229(03)00087-5.
Article
CAS
Google Scholar
Eriksson T, Stals I, Collén A, Tjerneld F, Claeyssens M, Stålbrand H, Brumer H: Heterogeneity of homologously expressed Hypocrea jecorina (Trichoderma reesei) Cel7B catalytic module. Eur J Biochem. 2004, 271: 1266-1276. 10.1111/j.1432-1033.2004.04031.x.
Article
PubMed
CAS
Google Scholar
Hägglund P, Eriksson T, Collén A, Nerinckx W, Claeyssens M, Stålbrand H: A cellulose-binding module of the Trichoderma reesei β-mannanase Man5A increases the mannan-hydrolysis of complex substrates. J Biotechnol. 2003, 101: 37-48.
Article
PubMed
Google Scholar
Askerlund P, Larsson C, Widell S: Cytochromes of plant plasma membranes - characterization by absorbance difference spectrophotometry and redox titration. Physiol Plant. 1989, 76: 123-134. 10.1111/j.1399-3054.1989.tb05621.x.
Article
CAS
Google Scholar
Chen HJ, Hou WC, Kuc J, Lin YH: Ca2+-dependent and Ca2+-independent excretion modes of salicylic acid in tobacco cell suspension culture. J Exp Bot. 2001, 52: 1219-1226. 10.1093/jexbot/52.359.1219.
Article
PubMed
CAS
Google Scholar
Larsson C, Sommarin M, Widell S: Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. Meth Enzymol. 1994, 228: 451-469. full_text.
Article
CAS
Google Scholar
Widell S, Lundborg T, Larsson C: Plasma membranes from oats prepared by partition in an aqueous polymer two-phase system: On the use of light-induced cytochrome b reduction as a marker for the plasma membrane. Plant Physiol. 1982, 70: 1429-1435. 10.1104/pp.70.5.1429.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fredrikson K, Larsson C: Activation of 1,3-β-glucan synthase by Ca2+, spermine and cellobiose - Localization of activator sites using inside-out plasma membrane vesicles. Physiol Plant. 1989, 77: 196-201. 10.1111/j.1399-3054.1989.tb04969.x.
Article
CAS
Google Scholar
Widell S, Sommarin M: Purification of endoplasmic-reticulum from wheat roots and shoots (Triticum aestivum) - Comparison of their blue light-sensitive redox components with those of highly purified plasma membrane. Physiol Plant. 1991, 82: 9-18. 10.1111/j.1399-3054.1991.tb02896.x.
Article
CAS
Google Scholar
Bearden JJ: Quantitation of sub-microgram of protein by an improved protein-dye assay. Biochim Biophys Acta. 1978, 533: 525-529.
Article
PubMed
CAS
Google Scholar
Merkouropoulos G, Andreasson E, Hess D, Boller T, Peck SC: An Arabidopsis protein phosphorylated in response to microbial elicitation, AtPHOS32, is a substrate of MAP kinases 3 and 6. J Biol Chem. 2008, 283: 10493-10499. 10.1074/jbc.M800735200.
Article
PubMed
CAS
Google Scholar
Sommarin M, Sandelius AS: Phosphatidylinositol and phosphatidylinositolphosphate kinases in plant plasma membranes. Biochim Biophys Acta. 1988, 958: 268-278.
Article
CAS
Google Scholar
Andersson MX, Larsson KE, Tjellström H, Liljenberg C, Sandelius AS: Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem. 2005, 280: 27578-27586. 10.1074/jbc.M503273200.
Article
PubMed
CAS
Google Scholar
Christie WW: Lipid analysis: isolation, separation, identification and structural analysis of lipids. The Oily Press: 2003.
Google Scholar
Baron CB, Coburn RF: Comparison of 2 copper reagents for detection of saturated and unsaturated neutral lipids by charring densitometry. J Liq Chromatogr. 1984, 7: 2793-2801. 10.1080/01483918408067046.
Article
CAS
Google Scholar
Carlsson AS, Hellgren LI, Selldén G, Sandelius AS: Effects of moderately enhanced levels of ozone on the acyl lipid-composition of leaves of garden pea (Pisum sativum). Physiol Plant. 1994, 91: 754-762. 10.1111/j.1399-3054.1994.tb03016.x.
Article
CAS
Google Scholar