Rhee SY, Crosby B: Biological databases for plant research. Plant Physiol. 2005, 138: 1-3. 10.1104/pp.104.900158.
Article
PubMed
PubMed Central
Google Scholar
Menda N, Buels RM, Tecle I, Mueller LA: A community-based annotation framework for linking Solanaceae genomes with phenomes. Plant Physiol. 2008, 147: 1788-1799. 10.1104/pp.108.119560.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liang C, Jaiswal P, Hebbard C, Avraham S, Buckler ES, Casstevens T, Hurwitz B, McCouch S, Ni J, Pujar A, et al: Gramene: a growing plant comparative genomics resource. Nucleic Acids Res. 2008, D947-953. 36 Database
Article
PubMed
CAS
PubMed Central
Google Scholar
Urbanczyk-Wochniak E, Sumner LW: MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics. 2007, 23: 1418-1423. 10.1093/bioinformatics/btm040.
Article
PubMed
CAS
Google Scholar
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M: MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37: 914-939. 10.1111/j.1365-313X.2004.02016.x.
Article
PubMed
CAS
Google Scholar
Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M, Blasing O, Kowalczyk M, Weicht D, Polinceusz A, et al: Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Mol Biol. 2006, 60: 773-792. 10.1007/s11103-005-5772-4.
Article
PubMed
CAS
Google Scholar
Goffard N, Weiller G: Extending MapMan: application to legume genome arrays. Bioinformatics. 2006, 22: 2958-2959. 10.1093/bioinformatics/btl517.
Article
PubMed
CAS
Google Scholar
Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, et al: Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol. 2008, 146: 1738-1758. 10.1104/pp.107.111781.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, et al: Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol. 2006, 24: 447-454. 10.1038/nbt1192.
Article
PubMed
CAS
Google Scholar
Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, Pleban T, Zamir D, Fernie AR: Mode of inheritance of primary metabolic traits in tomato. Plant Cell. 2008, 20: 509-523. 10.1105/tpc.107.056523.
Article
PubMed
CAS
PubMed Central
Google Scholar
Eshed Y, Zamir D: An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics. 1995, 141: 1147-1162.
PubMed
CAS
PubMed Central
Google Scholar
Lippman ZB, Semel Y, Zamir D: An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genetics Dev. 2007, 17: 545-552. 10.1016/j.gde.2007.07.007.
Article
CAS
Google Scholar
Bermudez L, Urias U, Milstein D, Kamenetzky L, Asis R, Fernie AR, Van Sluys MA, Carrari F, Rossi M: A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit. J Exp Bot. 2008, 59: 2875-2890. 10.1093/jxb/ern146.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen K, Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007, 8: 93-103. 10.1038/nrg1990.
Article
PubMed
CAS
Google Scholar
Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004, 14: 787-799. 10.1016/j.molcel.2004.05.027.
Article
PubMed
CAS
Google Scholar
Shuklaa LI, Chinnusamyb V, Sunkar R: The role of microRNAs and other endogenous small RNAs in plant stress responses. BBA-Gene Struct Expr. 2008, 1779: 743-748.
Google Scholar
Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, et al: Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007, 39: 787-791. 10.1038/ng2036.
Article
PubMed
CAS
Google Scholar
Griffiths-Jones S: The microRNA Registry. Nucleic Acids Res. 2004, D109-D111. 10.1093/nar/gkh023. 32 Database
Article
PubMed
CAS
PubMed Central
Google Scholar
Mueller LA, Lankhorst RK, Tanksley SD, Giovannoni JJ, et al: A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome. 2009, 2: 78-92. 10.3835/plantgenome2008.08.0005.
Article
CAS
Google Scholar
Stanke M, Steinkamp R, Waack S, Morgenstern B: AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004, 32: 309-312. 10.1093/nar/gkh379.
Article
Google Scholar
Gremme G, Brendel V, Sparks ME, Kurtz S: Engineering a software tool for gene structure prediction in higher organisms. Inform Software Tech. 2005, 47: 965-978. 10.1016/j.infsof.2005.09.005.
Article
Google Scholar
Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, et al: Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 2006, 142: 1380-1396. 10.1104/pp.106.088534.
Article
PubMed
CAS
PubMed Central
Google Scholar
Eby PJ: Python Web Server Gateway Interface v1.0. [http://www.python.org/dev/peps/pep-0333/]
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T: Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008, 18: 1602-1609. 10.1101/gr.080127.108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol. 2003, 5: R1-10.1186/gb-2003-5-1-r1.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y: miRU: an automated plant miRNA target prediction server. Nucleic Acids Res. 2005, W701-W704. 10.1093/nar/gki383. 33 Web Server
Article
PubMed
CAS
PubMed Central
Google Scholar
Alves L, Niemeier S, Hauenschild A, Rehmsmeier M, Merkle T: Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Res. 2009, 37: 4010-4021. 10.1093/nar/gkp272.
Article
PubMed
Google Scholar
Bartel B, Bartel DP: MicroRNAs: at the root of plant development?. Plant Physiol. 2003, 132: 709-717. 10.1104/pp.103.023630.
Article
PubMed
CAS
PubMed Central
Google Scholar
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP: MicroRNAs in plants. Gene Dev. 2002, 16: 1616-1626. 10.1101/gad.1004402.
Article
PubMed
CAS
PubMed Central
Google Scholar
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V: Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res. 2005, 15: 78-91. 10.1101/gr.2908205.
Article
PubMed
CAS
PubMed Central
Google Scholar
Axtell MJ, Bartel DP: Antiquity of microRNAs and their targets in land plants. Plant Cell. 2005, 17: 1658-1673. 10.1105/tpc.105.032185.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ: Elucidation of the small RNA component of the transcriptome. Science. 2005, 309: 1567-1569. 10.1126/science.1114112.
Article
PubMed
CAS
Google Scholar
Sunkar R, Zhu JK: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004, 16: 2001-2019. 10.1105/tpc.104.022830.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chiou TJ: The role of microRNAs in sensing nutrient stress. Plant Cell Environ. 2007, 30: 323-332. 10.1111/j.1365-3040.2007.01643.x.
Article
PubMed
CAS
Google Scholar
Allen E, Xie Z, Gustafson AM, Carrington JC: microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005, 121: 207-221. 10.1016/j.cell.2005.04.004.
Article
PubMed
CAS
Google Scholar
Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T: Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J. 2009, 57: 313-321. 10.1111/j.1365-313X.2008.03690.x.
Article
PubMed
CAS
Google Scholar
Leustek T: Sulfate Metabolism. The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD; 2002.
Google Scholar
Fitzgerald MA, Ugalde TD, Anderson JW: Sulphur nutrition affects delivery and metabolism of S in developing endosperms of wheat. J Exp Bot. 2001, 52: 1519-1526. 10.1093/jexbot/52.360.1519.
Article
PubMed
CAS
Google Scholar
Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F: MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J. 2008, 54: 876-887. 10.1111/j.1365-313X.2008.03448.x.
Article
PubMed
CAS
Google Scholar
Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL: The Vienna RNA website. Nucleic Acids Res. 2008, W70-74. 10.1093/nar/gkn188. 36 Web Server
Article
PubMed
CAS
PubMed Central
Google Scholar
Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999, 288: 911-940. 10.1006/jmbi.1999.2700.
Article
PubMed
CAS
Google Scholar
Mallory AC, Bouche N: MicroRNA-directed regulation: to cleave or not to cleave. Trends Plant Sci. 2008, 13: 359-367. 10.1016/j.tplants.2008.03.007.
Article
PubMed
CAS
Google Scholar
Itaya A, Bundschuh R, Archual AJ, Joung JG, Fei Z, Dai X, Zhao PX, Tang Y, Nelson RS, Ding B: Small RNAs in tomato fruit and leaf development. BBA-Gene Struct Expr. 2008, 1779: 99-107.
CAS
Google Scholar
Mueller LA, Mills AA, Skwarecki B, Buels RM, Menda N, Tanksley SD: The SGN comparative map viewer. Bioinformatics. 2008, 24: 422-423. 10.1093/bioinformatics/btm597.
Article
PubMed
CAS
Google Scholar