Putnam D, Budin J, Field L, Breene W: Camelina: a promising low-input oilseed. New crops. Edited by: Janick J, Simon JE. New York: Wiley, 1993:314-322.
Google Scholar
Gehringer A, Friedt W, Luhs W, Snowdon RJ: Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome. 2006, 49: 1555-1563. 10.1139/G06-117.
Article
PubMed
CAS
Google Scholar
Beilstein MA, Al-Shehbaz IA, Kellogg EA: Brassicaceae phylogeny and trichome evolution. Am J Bot. 2006, 93: 607-619. 10.3732/ajb.93.4.607.
Article
PubMed
CAS
Google Scholar
Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA: Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot. 2008, 95: 1307-1327. 10.3732/ajb.0800065.
Article
PubMed
CAS
Google Scholar
Budin J, Breene W, Putnam D: Some compositional properties of camelina (camelina sativa L. Crantz) seeds and oils. Journal of the American Oil Chemists' Society. 1995, 72: 309-315. 10.1007/BF02541088.
Article
CAS
Google Scholar
Frohlich A, Rice B: Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Industrial Crops and Products. 2005, 21: 25-31. 10.1016/j.indcrop.2003.12.004.
Article
CAS
Google Scholar
Bernardo A, Howard-Hildige R, O'Connell A, Nichol R, Ryan J, Rice B, Roche E, Leahy JJ: Camelina oil as a fuel for diesel transport engines. Industrial Crops and Products. 2003, 17: 191-197. 10.1016/S0926-6690(02)00098-5.
Article
CAS
Google Scholar
Akeroyd J: Camelina in Flora Europaea. Cambridge, UK: Cambridge University Press;, 2 1993.
Google Scholar
Mirek Z: Genus Camelina in Poland - Taxonomy, Distribution and Habitats. Fragmenta Floristica et Geobotanica. 1981, 27: 445-503.
Google Scholar
Brooks RE: Chromosome number reports LXXXVII. Taxon. 1985, 34: 346-351.
Google Scholar
Baksay L: The chromosome numbers and cytotaxonomical relations of some European plant species. Ann Hist-Nat Mus Natl Hung. 1957, 169-174.
Google Scholar
Maassoumi A: Cruciferes de la flore d'Iran: etude caryosystematique. Strasbourg, France; 1980.
Google Scholar
Francis A, Warwick S: The Biology of Canadian Weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Canadian Journal of Plant Science. 2009, 89: 791-810. 10.4141/CJPS08185.
Article
Google Scholar
Tedin O: Vererbung, Variation und Systematik in der Gattung Camelina. Hereditas. 1925, 6: 19-386.
Google Scholar
Flannery ML, Mitchell FJ, Coyne S, Kavanagh TA, Burke JI, Salamin N, Dowding P, Hodkinson TR: Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet. 2006, 113: 1221-1231. 10.1007/s00122-006-0377-0.
Article
PubMed
CAS
Google Scholar
Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T: Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breeding. 2005, 124: 446-453. 10.1111/j.1439-0523.2005.01134.x.
Article
CAS
Google Scholar
Martynov VV, Tsvetkov IL, Khavkin EE: Orthologs of arabidopsis CLAVATA 1 gene in cultivated Brassicaceae plants. Ontogenez. 2004, 35: 41-46.
PubMed
CAS
Google Scholar
Zubr J, Matthaus B: Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Industrial Crops and Products. 2002, 15: 155-162. 10.1016/S0926-6690(01)00106-6.
Article
CAS
Google Scholar
Durrett TP, Benning C, Ohlrogge J: Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008, 54: 593-607. 10.1111/j.1365-313X.2008.03442.x.
Article
PubMed
CAS
Google Scholar
Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J: Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 1994, 6: 147-158. 10.1105/tpc.6.1.147.
Article
PubMed
CAS
PubMed Central
Google Scholar
Miquel M, Browse J: Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem. 1992, 267: 1502-1509.
PubMed
CAS
Google Scholar
Hongtrakul V, Slabaugh MB, Knapp SJ: A Seed Specific {Delta}-12 Oleate Desaturase Gene Is Duplicated, Rearranged, and Weakly Expressed in High Oleic Acid Sunflower Lines. Crop Sci. 1998, 38: 1245-1249. 10.2135/cropsci1998.0011183X003800050022x.
Article
CAS
Google Scholar
Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A: High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet. 2004, 108: 1492-1502. 10.1007/s00122-004-1590-3.
Article
PubMed
CAS
Google Scholar
Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA: Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet. 2006, 113: 497-507. 10.1007/s00122-006-0315-1.
Article
PubMed
CAS
Google Scholar
Kunst L, Taylor D, Underhill E: Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem. 1992, 30: 425-434.
CAS
Google Scholar
James DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK: Directed Tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) Gene with the Maize Transposon Activator. Plant Cell. 1995, 7: 309-319. 10.1105/tpc.7.3.309.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J: A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol. 2008, 180: 751-765. 10.1111/j.1469-8137.2008.02619.x.
Article
PubMed
CAS
Google Scholar
Wu G, Wu Y, Xiao L, Li X, Lu C: Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet. 2008, 116: 491-499. 10.1007/s00122-007-0685-z.
Article
PubMed
CAS
Google Scholar
Katavic V, Mietkiewska E, Barton DL, Giblin EM, Reed DW, Taylor DC: Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem. 2002, 269: 5625-5631. 10.1046/j.1432-1033.2002.03270.x.
Article
PubMed
CAS
Google Scholar
Comai L: The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005, 6: 836-846. 10.1038/nrg1711.
Article
PubMed
CAS
Google Scholar
Sybenga J: Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist?. Genome. 1996, 39: 1176-1184. 10.1139/g96-148.
Article
PubMed
CAS
Google Scholar
Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004, 16: 1667-1678. 10.1105/tpc.021345.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, et al: Genome sequence of the palaeopolyploid soybean. Nature. 2010, 463: 178-183. 10.1038/nature08670.
Article
PubMed
CAS
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, et al: The B73 maize genome: complexity, diversity, and dynamics. Science. 2009, 326: 1112-1115. 10.1126/science.1178534.
Article
PubMed
CAS
Google Scholar
Duarte JM, Wall PK, Edger PP, Landherr LL, Ma H, Pires JC, Leebens-Mack J, dePamphilis CW: Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol Biol. 2010, 10: 61-10.1186/1471-2148-10-61.
Article
PubMed
PubMed Central
Google Scholar
The Arabidopsis Information Resource. [http://www.arabidopsis.org]
Schlueter JA, Lin JY, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O'Bleness M, Roe BA, Nelson RT, Scheffler BE, et al: Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics. 2007, 8: 330-10.1186/1471-2164-8-330.
Article
PubMed
PubMed Central
Google Scholar
Scheffler JA, Sharpe AG, Schmidt H, Sperling P, Parkin IAP, Lühs W, Lydiate DJ, Heinz E: Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet. 1997, 94: 583-591. 10.1007/s001220050454.
Article
CAS
Google Scholar
Hernandez ML, Mancha M, Martinez-Rivas JM: Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry. 2005, 66: 1417-1426. 10.1016/j.phytochem.2005.04.004.
Article
PubMed
CAS
Google Scholar
Mikkilineni V, Rocheford TR: Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet. 2003, 106: 1326-1332.
PubMed
CAS
Google Scholar
Martínez-Rivas JM, Sperling P, Lühs W, Heinz E: Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). Molecular Breeding. 2001, 8: 159-168. 10.1023/A:1013324329322.
Article
Google Scholar
Frohlich MW, Estabrook GF: Wilkinson support calculated with exact probabilities: an example using Floricaula/LEAFY amino acid sequences that compares three hypotheses involving gene gain/loss in seed plants. Mol Biol Evol. 2000, 17: 1914-1925.
Article
PubMed
CAS
Google Scholar
Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC: Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron. Mol Genet Genomics. 2006, 276: 351-368. 10.1007/s00438-006-0148-2.
Article
PubMed
CAS
Google Scholar
Tocher DRLM, Hodgson PA: Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Progress in Lipid Research. 1998, 37: 73-117. 10.1016/S0163-7827(98)00005-8.
Article
PubMed
CAS
Google Scholar
McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT: Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J. 2004, 37: 156-173. 10.1111/j.1365-313X.2004.01949.x.
Article
PubMed
CAS
Google Scholar
Belo A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A: Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics. 2008, 279: 1-10. 10.1007/s00438-007-0289-y.
Article
PubMed
CAS
Google Scholar
Cahoon EB, Marillia EF, Stecca KL, Hall SE, Taylor DC, Kinney AJ: Production of fatty acid components of meadowfoam oil in somatic soybean embryos. Plant Physiol. 2000, 124: 243-251. 10.1104/pp.124.1.243.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mietkiewska E, Giblin EM, Wang S, Barton DL, Dirpaul J, Brost JM, Katavic V, Taylor DC: Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiol. 2004, 136: 2665-2675. 10.1104/pp.104.046839.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ghanevati M, Jaworski JG: Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS. Eur J Biochem. 2002, 269: 3531-3539. 10.1046/j.1432-1033.2002.03039.x.
Article
PubMed
CAS
Google Scholar
Ghanevati M, Jaworski JG: Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS. Biochim Biophys Acta. 2001, 1530: 77-85.
Article
PubMed
CAS
Google Scholar
Ruuska SA, Girke T, Benning C, Ohlrogge JB: Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell. 2002, 14: 1191-1206. 10.1105/tpc.000877.
Article
PubMed
CAS
PubMed Central
Google Scholar
Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B: Phenotypic instability and rapid gene silencing in newly formed arabidopsis allotetraploids. Plant Cell. 2000, 12: 1551-1568. 10.1105/tpc.12.9.1551.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kashkush K, Feldman M, Levy AA: Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics. 2002, 160: 1651-1659.
PubMed
CAS
PubMed Central
Google Scholar
He P, Friebe BR, Gill BS, Zhou JM: Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol. 2003, 52: 401-414. 10.1023/A:1023965400532.
Article
PubMed
CAS
Google Scholar
Adams KL, Percifield R, Wendel JF: Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics. 2004, 168: 2217-2226. 10.1534/genetics.104.033522.
Article
PubMed
CAS
PubMed Central
Google Scholar
Park C, Correll D, Oeth P: Measuring Allele-Specific Expression Using MassARRAY. 2004, Doc No.8876-005 R01
Google Scholar
Nucleic Acid Dot Plots. [http://www.vivo.colostate.edu/molkit/dnadot/index.html]
Posada D, Crandall K: Modeltest: testing the model of DNA substitution. Bioinformatics. 1998, 14: 817-818. 10.1093/bioinformatics/14.9.817.
Article
PubMed
CAS
Google Scholar
Swofford D: PAUP* 4.0 beta 5: Phylogenetic Analysis Using Parsimony and Other Methods. Sinauer; 2001.
Google Scholar
Gugel RK, Falk KC: Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian journal of plant science. 2006, 86: 1047-1058.
Article
Google Scholar
Zubr J: Oil-seed crop: Camelina sativa. Industrial Crops and Products. 1997, 6: 113-119. 10.1016/S0926-6690(96)00203-8.
Article
Google Scholar
Moon H, Smith MA, Kunst L: A Condensing Enzyme from the Seeds of Lesquerella fendleri That Specifically Elongates Hydroxy Fatty Acids. Plant Physiol. 2001, 127: 1635-1643. 10.1104/pp.010544.
Article
PubMed
CAS
PubMed Central
Google Scholar
TIGR Rice Database. [http://rice.tigr.org/]
Phytozome. [http://www.phytozome.net/index.php]
Maize Genome Browser. [http://maizesequence.org/index.html]
Lu C, Kang J: Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Reports. 2008, 27: 273-278. 10.1007/s00299-007-0454-0.
Article
PubMed
CAS
Google Scholar
Salmon A, Ainouche ML, Wendel JF: Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology. 2005, 14: 1163-1175. 10.1111/j.1365-294X.2005.02488.x.
Article
PubMed
CAS
Google Scholar
Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen A-C, Elven R: Polyploidy in arctic plants. Biological Journal of the Linnean Society. 2004, 82: 521-536. 10.1111/j.1095-8312.2004.00337.x.
Article
Google Scholar
USDA Germplasm Resources Information Network. [http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl?language=en]
Hegarty MJ, Hiscock SJ: Genomic Clues to the Evolutionary Success of Polyploid Plants. Current Biology. 2008, 18: R435-R444. 10.1016/j.cub.2008.03.043.
Article
PubMed
CAS
Google Scholar
Dubcovsky J, Dvorak J: Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007, 316: 1862-1866. 10.1126/science.1143986.
Article
PubMed
CAS
Google Scholar
Gill BS, Friebe B: Plant cytogenetics at the dawn of the 21st century. Current Opinion in Plant Biology. 1998, 1: 109-115. 10.1016/S1369-5266(98)80011-3.
Article
PubMed
CAS
Google Scholar
Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D: A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol. 2005, 23: 75-81. 10.1038/nbt1043.
Article
PubMed
CAS
Google Scholar
Cooper J, Till B, Laport R, Darlow M, Kleffner J, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, et al: TILLING to detect induced mutations in soybean. BMC Plant Biology. 2008, 8: 9-10.1186/1471-2229-8-9.
Article
PubMed
PubMed Central
Google Scholar
Swaminathan MS, Rao MV: Frequency of Mutations Induced by Radiations in Hexaploid Species of Triticum. Science. 1960, 132: 1842-10.1126/science.132.3442.1842.
Article
PubMed
CAS
Google Scholar
Stadler LJ: Chromosome Number and the Mutation Rate in Avena and Triticum. Proc Natl Acad Sci USA. 1929, 15: 876-881. 10.1073/pnas.15.12.876.
Article
PubMed
CAS
PubMed Central
Google Scholar
Muramatsu M: Dosage Effect of the Spelta Gene q of Hexaploid Wheat. Genetics. 1963, 48: 469-482.
PubMed
CAS
PubMed Central
Google Scholar
Li W, Huang L, Gill BS: Recurrent Deletions of Puroindoline Genes at the Grain Hardness Locus in Four Independent Lineages of Polyploid Wheat1. Plant Physiol. 2008, 146: 200-212. 10.1104/pp.107.108852.
Article
PubMed
CAS
PubMed Central
Google Scholar
Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW: Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA. 1984, 81: 8014-8018. 10.1073/pnas.81.24.8014.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maniatis T, Sambrook J, Fritsch EF: Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1982.
Google Scholar
Boxshade. [http://www.ch.embnet.org/]
Tai HH, Pelletier C, Beardmore T: Total RNA isolation from Picea mariana dry seed. Plant Molecular Biolgy Reporter. 2004, 22: 93a-93e. 10.1007/BF02773357.
Article
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
PubMed
CAS
Google Scholar
Maddison W, Maddison DR: MacClade: analysis of phylogeny and character evolution. 2004, Sinauer, Version 4.05
Google Scholar