Crowell DN: Functional implications of protein isoprenylation in plants. Prog Lipid Res. 2000, 39 (5): 393-408. 10.1016/S0163-7827(00)00010-2.
Article
PubMed
CAS
Google Scholar
Clarke S: Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem. 1992, 61: 355-386. 10.1146/annurev.bi.61.070192.002035.
Article
PubMed
CAS
Google Scholar
Zhang FL, Casey PJ: Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996, 65: 241-269. 10.1146/annurev.bi.65.070196.001325.
Article
PubMed
CAS
Google Scholar
Crowell DN, Huizinga DH: Protein isoprenylation: the fat of the matter. Trends Plant Sci. 2009, 14 (3): 163-170. 10.1016/j.tplants.2008.12.001.
Article
PubMed
CAS
Google Scholar
Hartman HL, Hicks KA, Fierke CA: Peptide specificity of protein prenyltransferases is determined mainly by reactivity rather than binding affinity. Biochemistry. 2005, 44 (46): 15314-15324. 10.1021/bi0509503.
Article
PubMed
CAS
Google Scholar
Qian D, Zhou D, Ju R, Cramer CL, Yang Z: Protein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control. Plant Cell. 1996, 8 (12): 2381-2394. 10.1105/tpc.8.12.2381.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang Z, Cramer CL, Watson JC: Protein farnesyltransferase in plants. Molecular cloning and expression of a homolog of the beta subunit from the garden pea. Plant Physiol. 1993, 101 (2): 667-674. 10.1104/pp.101.2.667.
Article
PubMed
CAS
PubMed Central
Google Scholar
Loraine AE, Yalovsky S, Fabry S, Gruissem W: Tomato Rab1A homologs as molecular tools for studying rab geranylgeranyl transferase in plant cells. Plant Physiol. 1996, 110 (4): 1337-1347. 10.1104/pp.110.4.1337.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yalovsky S, Loraine AE, Gruissem W: Specific prenylation of tomato Rab proteins by geranylgeranyl type-II transferase requires a conserved cysteine-cysteine motif. Plant Physiol. 1996, 110 (4): 1349-1359.
PubMed
CAS
PubMed Central
Google Scholar
Caldelari D, Sternberg H, Rodríguez-Concepción M, Gruissem W, Yalovsky S: Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain. Plant Physiol. 2001, 126 (4): 1416-1429. 10.1104/pp.126.4.1416.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P: A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science. 1996, 273 (5279): 1239-1241. 10.1126/science.273.5279.1239.
Article
PubMed
CAS
Google Scholar
Johnson CD, Chary SN, Chernoff EA, Zeng Q, Running MP, Crowell DN: Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant Physiol. 2005, 139 (2): 722-733. 10.1104/pp.105.065045.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI: Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science. 1998, 282 (5387): 287-290. 10.1126/science.282.5387.287.
Article
PubMed
CAS
Google Scholar
Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S: Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci USA. 2004, 101 (20): 7815-7820. 10.1073/pnas.0402385101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Allen GJ, Murata Y, Chu SP, Nafisi M, Schroeder JI: Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell. 2002, 14 (7): 1649-1662. 10.1105/tpc.010448.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brady SM, Sarkar SF, Bonetta D, McCourt P: The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 2003, 34 (1): 67-75. 10.1046/j.1365-313X.2003.01707.x.
Article
PubMed
CAS
Google Scholar
Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, et al: Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J. 2005, 43 (3): 413-424. 10.1111/j.1365-313X.2005.02463.x.
Article
PubMed
CAS
Google Scholar
Bonetta D, Bayliss P, Sun S, Sage T, McCourt P: Farnesylation is involved in meristem organization in Arabidopsis. Planta. 2000, 211 (2): 182-190. 10.1007/s004250000283.
Article
PubMed
CAS
Google Scholar
Yalovsky S, Kulukian A, Rodríguez-Concepción M, Young CA, Gruissem W: Functional requirement of plant farnesyltransferase during development in arabidopsis. Plant Cell. 2000, 12 (8): 1267-1278. 10.1105/tpc.12.8.1267.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ziegelhoffer EC, Medrano LJ, Meyerowitz EM: Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc Natl Acad Sci USA. 2000, 97 (13): 7633-7638. 10.1073/pnas.130189397.
Article
PubMed
CAS
PubMed Central
Google Scholar
Running MP, Fletcher JC, Meyerowitz EM: The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development. 1998, 125 (14): 2545-2553.
PubMed
CAS
Google Scholar
Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z: The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol. 2001, 126 (2): 670-684. 10.1104/pp.126.2.670.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH: Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes & Development. 2001, 15 (14): 1808-1816.
Article
CAS
Google Scholar
Wyatt RE, Ainley WM, Nagao RT, Conner TW, Key JL: Expression of the Arabidopsis AtAux2-11 auxin-responsive gene in transgenic plants. Plant Mol Biol. 1993, 22 (5): 731-749. 10.1007/BF00027361.
Article
PubMed
CAS
Google Scholar
Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, Chen JG, Jones AM, Botella JR: Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. Plant Cell. 2007, 19 (4): 1235-1250. 10.1105/tpc.107.050096.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rodríguez-Concepción M, Yalovsky S, Zik M, Fromm H, Gruissem W: The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J. 1999, 18 (7): 1996-2007. 10.1093/emboj/18.7.1996.
Article
PubMed
PubMed Central
Google Scholar
Xiao C, Xin H, Dong A, Sun C, Cao K: A novel calmodulin-like protein gene in rice which has an unusual prolonged C-terminal sequence carrying a putative prenylation site. DNA Res. 1999, 6 (3): 179-181. 10.1093/dnares/6.3.179.
Article
PubMed
CAS
Google Scholar
Dykema PE, Sipes PR, Marie A, Biermann BJ, Crowell DN, Randall SK: A new class of proteins capable of binding transition metals. Plant Mol Biol. 1999, 41 (1): 139-150. 10.1023/A:1006367609556.
Article
PubMed
CAS
Google Scholar
Zhu JK, Bressan RA, Hasegawa PM: Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc Natl Acad Sci USA. 1993, 90 (18): 8557-8561. 10.1073/pnas.90.18.8557.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suzuki N, Yamaguchi Y, Koizumi N, Sano H: Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J. 2002, 32 (2): 165-173. 10.1046/j.1365-313X.2002.01412.x.
Article
PubMed
CAS
Google Scholar
Galichet A, Hoyerova K, Kaminek M, Gruissem W: Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin Biosynthesis in Arabidopsis. Plant Physiol. 2008, 146: 1155-1164. 10.1104/pp.107.107425.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hemmerlin A, Bach TJ: Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J. 1998, 14: 65-74. 10.1046/j.1365-313X.1998.00095.x.
Article
PubMed
CAS
Google Scholar
Hemmerlin A, Fischt I, Bach TJ: Differential interaction of branch-specific inhibitors of isoprenoid biosynthesis with cell cycle progression in tobacco BY-2 cells. Physiol Plant. 2000, 110: 343-350.
Google Scholar
Bracha K, Lavy M, Yalovsky S: The Arabidopsis AtSTE24 is a CAAX protease with broad substrate specificity. J Biol Chem. 2002, 277 (33): 29856-29864. 10.1074/jbc.M202916200.
Article
PubMed
CAS
Google Scholar
Cadiñanos J, Varela I, Mandel DA, Schmidt WK, Díaz-Perales A, López-Otín C, Freije JM: AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes. J Biol Chem. 2003, 278 (43): 42091-42097. 10.1074/jbc.M306700200.
Article
PubMed
Google Scholar
Boyartchuk VL, Ashby MN, Rine J: Modulation of Ras and a-factor function by carboxyl-terminal proteolysis.[see comment]. Science. 1997, 275 (5307): 1796-1800. 10.1126/science.275.5307.1796.
Article
PubMed
CAS
Google Scholar
Bergo MO, Leung GK, Ambroziak P, Otto JC, Casey PJ, Young SG: Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J Biol Chem. 2000, 275 (23): 17605-17610. 10.1074/jbc.C000079200.
Article
PubMed
CAS
Google Scholar
Hancock JF, Cadwallader K, Marshal CJ: Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J. 1991, 10: 641-646.
PubMed
CAS
PubMed Central
Google Scholar
Parish CA, Rando RR: Isoprenylation/methylation of proteins enhances membrane association by a hydrophobic mechanism. Biochemistry. 1996, 35 (26): 8473-8477. 10.1021/bi960603g.
Article
PubMed
CAS
Google Scholar
Parish CA, Smrcka AV, Rando RR: The role of G protein methylation in the function of a geranylgeranylated beta gamma isoform. Biochemistry. 1996, 35 (23): 7499-7505. 10.1021/bi960271f.
Article
PubMed
CAS
Google Scholar
Rodríguez-Concepción M, Toledo-Ortiz G, Yalovsky S, Caldelari D, Gruissem W: Carboxyl-methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. Plant J. 2000, 24 (6): 775-784. 10.1046/j.1365-313x.2000.00924.x.
Article
PubMed
Google Scholar
Sapperstein S, Berkower C, Michaelis S: Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export. Mol Cell Biol. 1994, 14 (2): 1438-1449.
Article
PubMed
CAS
PubMed Central
Google Scholar
Crowell DN, Sen SE, Randall SK: Prenylcysteine alpha-carboxyl methyltransferase in suspension-cultured tobacco cells. Plant Physiol. 1998, 118 (1): 115-123. 10.1104/pp.118.1.115.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chary SN, Bultema RL, Packard CE, Crowell DN: Prenylcysteine alpha-carboxyl methyltransferase expression and function in Arabidopsis thaliana. Plant J. 2002, 32 (5): 735-747. 10.1046/j.1365-313X.2002.01463.x.
Article
CAS
Google Scholar
Crowell DN, Kennedy M: Identification and functional expression in yeast of a prenylcysteine alpha-carboxyl methyltransferase gene from Arabidopsis thaliana. Plant Mol Biol. 2001, 45 (4): 469-476. 10.1023/A:1010671202925.
Article
PubMed
CAS
Google Scholar
Huizinga DH, Omosegbon O, Omery B, Crowell DN: Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. Plant Cell. 2008, 20 (10): 2714-2728. 10.1105/tpc.107.053389.
Article
PubMed
CAS
PubMed Central
Google Scholar
Deem AK, Bultema RL, Crowell DN: Prenylcysteine methylesterase in Arabidopsis thaliana. Gene. 2006, 380 (2): 159-166. 10.1016/j.gene.2006.05.023.
Article
PubMed
CAS
Google Scholar
Armstrong SA, Hannah VC, Goldstein JL, Brown MS: CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. J Biol Chem. 1995, 270 (14): 7864-7868. 10.1074/jbc.270.14.7864.
Article
PubMed
CAS
Google Scholar
Trueblood CE, Ohya Y, Rine J: Genetic evidence for in vivo cross-specificity of the CaaX-box protein prenyltransferases farnesyltransferase and geranylgeranyltransferase-I in Saccharomyces cerevisiae. Mol Cell Biol. 1993, 13 (7): 4260-4275.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gerber E, Hemmerlin A, Hartmann M, Heintz D, Hartmann MA, Mutterer J, Rodríguez-Concepción M, Boronat A, Van Dorsselaer A, Rohmer M, et al: The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. Plant Cell. 2009, 21 (1): 285-300. 10.1105/tpc.108.063248.
Article
PubMed
CAS
PubMed Central
Google Scholar
Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL: Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase. Proc Natl Acad Sci USA. 1991, 88 (3): 732-736. 10.1073/pnas.88.3.732.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lane KT, Beese LS: Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res. 2006, 47 (4): 681-699. 10.1194/jlr.R600002-JLR200.
Article
PubMed
CAS
Google Scholar
Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS: Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J. 2003, 22 (22): 5963-5974. 10.1093/emboj/cdg571.
Article
PubMed
CAS
PubMed Central
Google Scholar
Strickland CL, Windsor WT, Syto R, Wang L, Bond R, Wu Z, Schwartz J, Le HV, Beese LS, Weber PC: Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry. 1998, 37 (47): 16601-16611. 10.1021/bi981197z.
Article
PubMed
CAS
Google Scholar
Long SB, Casey PJ, Beese LS: The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures. Structure. 2000, 8 (2): 209-222. 10.1016/S0969-2126(00)00096-4.
Article
PubMed
CAS
Google Scholar
Long SB, Casey PJ, Beese LS: Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry. 1998, 37 (27): 9612-9618. 10.1021/bi980708e.
Article
PubMed
CAS
Google Scholar
Park HW, Boduluri SR, Moomaw JF, Casey PJ, Beese LS: Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution.[see comment][erratum appears in Science 1997 Apr 4;276(5309):21]. Science. 1997, 275 (5307): 1800-1804. 10.1126/science.275.5307.1800.
Article
PubMed
CAS
Google Scholar