Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011;11:163.
Article
PubMed
PubMed Central
Google Scholar
Yadav SK. Cold stress tolerance mechanisms in plants. A review Agronomy for Sustainable Development 2010;30:515–527.
Guo X, Liu D, Chong K. Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol. 2018;60:745–56.
Article
PubMed
Google Scholar
Sanghera GS, Wani SH, Hussain W, Singh NB. Engineering cold stress tolerance in crop plants. Curr Genomics. 2011;12:30–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J, Dong CH, Zhu JK. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol. 2007;10:290–5.
Article
CAS
PubMed
Google Scholar
Theocharis A, Clement C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta. 2012;235:1091–105.
Article
CAS
PubMed
Google Scholar
Thomashow MF. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:571–99.
Article
CAS
PubMed
Google Scholar
Hoermiller II, Naegele T, Augustin H, Stutz S, Weckwerth W, Heyer AG. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ. 2017;40:602–10.
Article
CAS
PubMed
Google Scholar
Chinnusamy V, Zhu JK, Sunkar R. Gene regulation during cold stress acclimation in plants. Methods Mol Biol. 2010;639:39–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knight MR, Knight H. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol. 2012;195:737–51.
Article
CAS
PubMed
Google Scholar
Ritonga FN, Chen S. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants (Basel). 2020;9:560.
Article
CAS
PubMed Central
Google Scholar
Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A. 1997;94:1035–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998;16:433–42.
Article
CAS
PubMed
Google Scholar
Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12:444–51.
Article
CAS
PubMed
Google Scholar
Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, et al. Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome. Plant Cell. 2018;30:1424–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penfield S. Temperature perception and signal transduction in plants. New Phytol. 2008;179:615–28.
Article
CAS
PubMed
Google Scholar
Wang DZ, Jin YN, Ding XH, Wang WJ, Zhai SS, Bai LP, et al. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants. Biochemistry (Mosc). 2017;82:1103–17.
Article
CAS
Google Scholar
Barah P, Jayavelu ND, Rasmussen S, Nielsen HB, Mundy J, Bones AM. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics. 2013;14:722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Byrns B, Badawi MA, Diallo AB, Danyluk J, Sarhan F, et al. Transcriptomic insights into Phenological development and cold tolerance of wheat grown in the field. Plant Physiol. 2018;176:2376–94.
Article
CAS
PubMed
Google Scholar
Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, et al. Transcriptome analysis of cold acclimation in barley Albina and xantha mutants. Plant Physiol. 2006;141:257–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan S, Xu Q, Ma D, Zhang W, Xu Z, Zhao M, et al. Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene. 2019;685:96–105.
Article
CAS
PubMed
Google Scholar
Li M, Sui N, Lin L, Yang Z, Zhang Y. Transcriptomic profiling revealed genes involved in response to cold stress in maize. Funct Plant Biol. 2019;46:830–44.
Article
CAS
PubMed
Google Scholar
Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ. Transcriptome response mediated by cold stress in Lotus japonicus. Front Plant Sci. 2016;7:374.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang Y, Lin Y, Luo Y, Wang X, Chen Q, et al. A transcriptomic analysis reveals diverse regulatory networks that respond to cold stress in strawberry (Fragariaxananassa). Int J Genomics. 2019;2019:7106092.
PubMed
PubMed Central
Google Scholar
Kang WH, Sim YM, Koo N, Nam JY, Lee J, Kim N, et al. Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci Data. 2020;7:17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang QS, Gao J, He WD, Dou TX, Ding LJ, Wu JH, et al. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics. 2015;16:446.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen H, Chen X, Chen D, Li J, Zhang Y, Wang A. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biol. 2015;15:132.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Wang X, Ban Q, Zhu X, Jiang C, Wei C, et al. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics. 2019;20:624.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Teixeira da Silva JA, Niu M, Li M, He C, Zhao J, et al. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Sci Rep. 2017;7:42165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun LL, Wang YB, Wang RL, Wang RT, Zhang P, Ju Q, et al. Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science-Nano. 2020;7:3587–604.
Article
CAS
Google Scholar
Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, et al. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics. 2017;18:496.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, et al. A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci U S A. 2003;100:8595–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schweiger R, Schwenkert S. Protein-protein interactions visualized by bimolecular fluorescence complementation in tobacco protoplasts and leaves. J Vis Exp. 2014;9:51327.
Google Scholar
Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, et al. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J. 2009;7:550–61.
Article
CAS
PubMed
Google Scholar
Khodakovskaya M, McAvoy R, Peters J, Wu H, Li Y. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta. 2006;223:1090–100.
Article
CAS
PubMed
Google Scholar
Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 1994;105:601–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuo C, Wang T, Guo Z, Lu S. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (−) deficiency in transgenic tobacco plants. BMC Plant Biol. 2016;16:138.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wei Y, Chen H, Wang L, Zhao Q, Wang D, Zhang T. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signal Behav. 2022;17:2013638.
Article
PubMed
CAS
Google Scholar
Ya J, Zhang C, Yang H, Yang Y, Huang C, Tian Y. Lu X. proteomic analysis of cold stress responses in tobacco seedlings. Afr J Biotechnol. 2011;10:18991–9004.
Google Scholar
Zhao Q, Xiang X, Liu D, Yang A, Wang Y. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Front Plant Sci. 2018;9:381.
Article
PubMed
PubMed Central
Google Scholar
Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, et al. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One. 2013;8:e65120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin P, Shen C, Chen H, Yao XH, Lin J. Improving tobacco freezing tolerance by co-transfer of stress-inducible CbCBF and CbICE53 genes. Biol Plant. 2017;61:520–8.
Article
CAS
Google Scholar
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the role of plant transcription factors in the Battle against abiotic stress. Int J Mol Sci. 2018;19:1634.
Article
PubMed Central
CAS
Google Scholar
Singh K, Foley RC, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 2002;5:430–6.
Article
CAS
PubMed
Google Scholar
Kitsios G, Doonan JH. Cyclin dependent protein kinases and stress responses in plants. Plant Signal Behav. 2011;6:204–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A. 1996;93:11274–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol. 1997;15:15–9.
Article
CAS
PubMed
Google Scholar
Yang L, Wu K, Gao P, Liu X, Li G, Wu Z. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance. Plant Sci. 2014;215-216:19–28.
Article
CAS
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Purty RS, Sachar M, Chatterjee S. Structural and expression analysis of salinity stress responsive phosphoserine phosphatase from Brassica juncea (L.). J Proteomics Bioinformatics. 2017;10:119–27.
Article
Google Scholar
Zhao KX, Chu SS, Zhang XD, Wang L, Rono JK, Yang ZM. AtWRKY21 negatively regulates tolerance to osmotic stress in Arabidopsis. Environ Exp Bot. 2020;169:103920.
Article
CAS
Google Scholar
Mathe C, Garda T, Freytag C, M MH. The role of serine-threonine protein phosphatase PP2A in plant oxidative stress signaling-facts and hypotheses. Int J Mol Sci 2019;20:3028.
Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ. Transcription factors in plant stress responses: challenges and potential for sugarcane improvement. Plants (Basel). 2020;9:491.
Article
CAS
Google Scholar
Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci. 2019;10:228.
Article
PubMed
PubMed Central
Google Scholar
Dong NQ, Sun Y, Guo T, Shi CL, Zhang YM, Kan Y, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun. 2020;11:2629.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bang W, Kim S, Ueda A, Vikram M, Yun D, Bressan RA, et al. Arabidopsis carboxyl-terminal domain phosphatase-like isoforms share common catalytic and interaction domains but have distinct in planta functions. Plant Physiol. 2006;142:586–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5:e12776.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim CY, Vo KTX, Nguyen CD, Jeong DH, Lee SK, Kumar M, et al. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnol Rep. 2016;10:13–23.
Article
CAS
Google Scholar
Zou C, Jiang W, Yu D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot. 2010;61:3901–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Liu J, Zhou X, Liu S, Zhuang Y. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant. Peer J. 2020;8:e8777.
Article
PubMed
PubMed Central
Google Scholar
Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, Li S, et al. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep. 2016;35:655–66.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Lamalakshmi Devi E, Kumar S, Singh B, Sharma S, Beemrote A, Devi C, Chongtham S, Chongtham H, Yumlembam R, Athokpam H, et al. Adaptation Strategies and Defence Mechanisms of Plants During Environmental Stress. In: Medicinal Plants and Environmental Challenges. Edited by Ghorbanpour M, Varma A. Cham: Springer International Publishing; 2017:359–413.
Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG. Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol. 2020;62:563–80.
Article
CAS
PubMed
Google Scholar
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–608.
Article
CAS
PubMed
Google Scholar
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, et al. Multilevel regulation of abiotic stress responses in plants. Front Plant Sci. 2017;8:1564.
Article
PubMed
PubMed Central
Google Scholar
Bashir K, Matsui A, Rasheed S, Seki M. Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. F1000Res. 2019;8:F1000.
Article
PubMed
PubMed Central
Google Scholar
Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ. Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J. 2010;8:749–71.
Article
CAS
PubMed
Google Scholar
Li ZB, Zeng XY, Xu JW, Zhao RH, Wei YN. Transcriptomic profiling of cotton Gossypium hirsutum challenged with low-temperature gradients stress. Sci Data. 2019;6:197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu R, Zhu X, Xiang S, Zhan Y, Zhu M, Yin H, et al. Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco. Biochem Biophys Res Commun. 2016;469:535–41.
Article
CAS
PubMed
Google Scholar
Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, et al. ATP synthesis and storage. Purinergic Signal. 2012;8:343–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, et al. Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell. 2008;20:3241–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rapacz M, Wolanin B, Hura K, Tyrka M. The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions. Ann Bot. 2008;101:689–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savitch LV, Barker-Astrom J, Ivanov AG, Hurry V, Oquist G, Huner NP, et al. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Planta. 2001;214:295–303.
Article
CAS
PubMed
Google Scholar
Huner NP, Oquist G, Hurry VM, Krol M, Falk S, Griffith M. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res. 1993;37:19–39.
Article
CAS
PubMed
Google Scholar
Stitt M, Hurry V. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol. 2002;5:199–206.
Article
CAS
PubMed
Google Scholar
Savitch L, Leonardos E, Król M, Jansson S, Grodzinski B, Huner N, et al. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environment. 2002;25:761–71.
Article
CAS
Google Scholar
Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M. Plant plasma membrane proteomics for improving cold tolerance. Front Plant Sci. 2013;4:90.
PubMed
PubMed Central
Google Scholar
Zheng G, Tian B, Zhang F, Tao F, Li W. Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels. Plant Cell Environ. 2011;34:1431–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Dong J, Zhao X, Zhang Y, Ren J, Xing L, et al. Research Progress in membrane lipid metabolism and molecular mechanism in Peanut cold tolerance. Front Plant Sci. 2019;10:838.
Article
PubMed
PubMed Central
Google Scholar
Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, et al. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett. 2006;580:6537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davletova S, Schlauch K, Coutu J, Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 2005;139:847–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres-Galea P, Hirtreiter B, Bolle C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME a SIGNAL TRANSDUCTION1, function cooperatively in phytochrome a signal TRANSDUCTION. Plant Physiol. 2013;161:291–304.
Article
CAS
PubMed
Google Scholar
Torres-Galea P, Huang LF, Chua NH, Bolle C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome a responses. Mol Gen Genomics. 2006;276:13–30.
Article
CAS
Google Scholar
Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, et al. Phytochromes function as thermosensors in Arabidopsis. Science. 2016;354:886–9.
Article
CAS
PubMed
Google Scholar
Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 2000;12:393–404.
CAS
PubMed
PubMed Central
Google Scholar
Sorek N, Sorek H, Kijac A, Szemenyei HJ, Bauer S, Hematy K, et al. The Arabidopsis COBRA protein facilitates cellulose crystallization at the plasma membrane. J Biol Chem. 2014;289:34911–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, et al. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell. 2003;15:2020–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell. 2005;17:2384–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 2011;52:344–60.
Article
CAS
PubMed
Google Scholar
Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J. 2002;30:679–89.
Article
CAS
PubMed
Google Scholar
Liu C, Zhang T. Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genomics. 2017;18:118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen L, Han J, Deng X, Tan S, Li L, Li L, et al. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon. Sci Rep. 2016;6:21623.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao S, Wang Y, Li X, Gao F, Feng J, Zhou Y. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants (Basel). 2020;9:455.
Article
CAS
PubMed Central
Google Scholar
Espinoza C, Liang Y, Stacey G. Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis. Plant J. 2017;89:984–95.
Article
CAS
PubMed
Google Scholar
Nguyen KH, Ha CV, Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Fujita Y, et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci U S A. 2016;113:3090–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pais SM, Tellez-Inon MT, Capiati DA. Serine/threonine protein phosphatases type 2A and their roles in stress signaling. Plant Signal Behav. 2009;4:1013–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Guo T, Wang Z, Kang J, Yang Q, Shen Y, et al. Expression of three related to ABI3/VP1 genes in Medicago truncatula caused increased stress resistance and branch increase in Arabidopsis thaliana. Front Plant Sci. 2020;11:611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha AK, Jaggi M, Raghuram B, Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav. 2011;6:196–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin L, Wu J, Jiang M, Wang Y. Plant mitogen-activated protein kinase cascades in environmental stresses. Int J Mol Sci. 2021;22:1543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shou H, Bordallo P, Fan JB, Yeakley JM, Bibikova M, Sheen J, et al. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci U S A. 2004;101:3298–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong H, Wu C, Luo C, Wei M, Qu S, Wang S. Overexpression of MdCPK1a gene, a calcium dependent protein kinase in apple, increase tobacco cold tolerance via scavenging ROS accumulation. PLoS One. 2020;15:e0242139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics. 2017;18:448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol. 2015;87:99–110.
Article
CAS
PubMed
Google Scholar