Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 2021;11:2804–37. https://doi.org/10.1039/d0ra09941d.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatterjee S, Dhanurdhar L, Rokhum L. Extraction of a cardanol based liquid bio-fuel from waste natural resource and decarboxylation using a silver-based catalyst. Renew. Sust. Energ. Rev. 2017;72:560–4. https://doi.org/10.1016/j.rser.2017.01.035.
Article
CAS
Google Scholar
Stadler L, Homafar M, Hartl A, Najafishirtari S, Colormbo M, Zboril R, et al. Recyclable magnetic microporous organic polymer (MOP) encapsulated with palladium nanoparticles and Co/C nanobeads for hydrogenation reactions. ACS Sustain. Chem. Eng. 2019;7:2388–99. https://doi.org/10.1021/acssuschemeng.8b05222.
Article
CAS
Google Scholar
Sarmast MK, Salehi H. Silver nanoparticles: An influential element in plant nanobiotechnology. Mol. Biotechnol. 2016;58:441–9. https://doi.org/10.1007/s12033-016-9943-0.
Article
CAS
PubMed
Google Scholar
U.S. EPA, Nanomaterial case study: Nanoscale silver in disinfectant spray (final report). U.S. Environmental Protection Agency, 2012; Washington, DC EPA/600/R-10/081F.
El-Rafie HM, El-Rafie MH, Zahran MK. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym. 2013;96:403–10. https://doi.org/10.1016/j.carbpol.2013.03.071.
Article
CAS
PubMed
Google Scholar
Devatha CP, Thalla AK, Katte SY. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod. 2016;139:1425–35. https://doi.org/10.1016/j.jclepro.2016.09.019.
Article
CAS
Google Scholar
Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SCB, et al. Biopolymers regulate silver nanoparticle under microwave irradiation for effective antibacterial and antibiofilm activities. PLoS One. 2016;11:e0157612. https://doi.org/10.1371/journal.pone.0157612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amooaghaie R, Saeri MR, Azizi M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotox. Environ. Safe. 2015;120:400–8. https://doi.org/10.1016/j.ecoenv.2015.06.025.
Article
CAS
Google Scholar
Jha AK, Prasad K, Kumar V. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol. Progr. 2009;25:1476–9. https://doi.org/10.1002/btpr.233.
Article
CAS
Google Scholar
Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain. Chem. Eng. 2019;7:14580–90. https://doi.org/10.1021/acssuschemeng.9b02180.
Article
CAS
Google Scholar
Song KX, He XQ. How to improve seed germination with green nanopriming. Seed sci. Technol. 2021;49:81–92. https://doi.org/10.15258/sst.2021.49.2.01.
Article
Google Scholar
Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf Extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci. 2017;4(1–14). https://doi.org/10.3389/fmolb.2017.00014.
Oves M, Aslam M, Rauf MA, Qayyum S, Qari HA, Khan MS. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mat. Sci. Eng. C-Mater. 2018;89:429–43. https://doi.org/10.1016/j.msec.2018.03.035.
Article
CAS
Google Scholar
Esfanddarani HM, Kajani AA, Bordbar AK. Green synthesis of silver nanoparticles using flower extract of Malva sylvestris and investigation of their antibacterial activity. IET Nanobiotechnol. 2017;12:412–6. https://doi.org/10.1049/iet-nbt.2017.0166.
Article
Google Scholar
Masum MMI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial Brown Stripe. Front. Microbiol. 2019;10:820. https://doi.org/10.3389/fmicb.2019.00820.
Article
PubMed
PubMed Central
Google Scholar
Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, et al. Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach. Int. J. Nanomed. 2021;14:5087–107. https://doi.org/10.2147/IJN.S200254.
Article
Google Scholar
Mohamad N, Arham NA, Jai J, Hadi A. Plant extract as reducing agent in synthesis of metallic nanoparticles: A review. Adv. Mat. Res. 2014;832:350–5. https://doi.org/10.4028/www.scientific.net/AMR.832.350.
Article
CAS
Google Scholar
Park Y. A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol. Res-UK. 2014;30:169–78. https://doi.org/10.5487/TR.2014.30.3.169.
Article
CAS
Google Scholar
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013;87:1181–200. https://doi.org/10.1007/s00204-013-1079-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouton JH. Breeding lucerne for persistence. Crop Pasture Sci. 2012;63:95–106. https://doi.org/10.1071/CP12009.
Article
Google Scholar
Nair RR. Effects of nanoparticles on plant growth and development. In: Kole C, Kumar DS, Khodakovskaya MV, editors. Plant Nanotechnology. Switzerland: Springer International Publishing; 2016. p. 95–118. https://doi.org/10.1007/978-3-319-42154-4_5.
Chapter
Google Scholar
Tripathi A, Liu S, Singh PK, Kumar N, Pandey AC, Tripathi DK, et al. Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNPs) in Cucumis sativus L. Plant Gene. 2017;11:255–64. https://doi.org/10.1016/j.plgene.2017.07.005.
Article
CAS
Google Scholar
Mahakham W, Theerakulpisut P, Maensiri S, Phumying S., Sarmah A.K. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ., 2016; 573:1089-1102. Doi: https://doi.org/10.1016/j.scitotenv.2016.08.120.
Mahakham W, Sarmah AK, Maensir S, Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep-UK. 2017;7:8263. https://doi.org/10.1038/s41598-017-08669-5.
Article
CAS
Google Scholar
Acharya P, Jayaprakasha GK, Semper J, Patil BS. 1H NMR and LC-MS-based metabolomics reveals enhancement of growth-promoting metabolites in onion seedlings treated with green-synthesized nanomaterials. J Agr Food Chem. 2020;68:13206–20. https://doi.org/10.1021/acs.jafc.0c00817.
Article
CAS
Google Scholar
Wiechen M, Zaharieva I, Dau H, Kurz P. Layered manganese oxides for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-like fashion. Chem. Sci. 2012;3:2330–9. https://doi.org/10.1039/c2sc20226c.
Article
CAS
Google Scholar
Tripathi DK, Singh S, Srivastava PK, Singh VP, Singh S. Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Bioch. 2017;110:167–77. https://doi.org/10.1016/j.plaphy.2016.06.015.
Article
CAS
Google Scholar
Nel A, Xia T, Madler L, Li N. Toxic Potential of Materials at the Nanolevel. Science. 2006;311:622–7. https://doi.org/10.1126/science.1114397.
Article
CAS
PubMed
Google Scholar
Fratoddi I, Venditti I, Cametti C, Russo MV. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015;8:1771–99. https://doi.org/10.1007/s12274-014-0697-3.
Article
CAS
Google Scholar
Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A. Seed priming: state of the art and new perspectives. Plant Cell Rep. 2015;34:1281–93. https://doi.org/10.1007/s00299-015-1784-y.
Article
CAS
PubMed
Google Scholar
Sarkar N, Sharma RS, Kaushik M. Innovative application of facile single pot green synthesized CuO and CuO@APTES nanoparticles in nanopriming of Vigna radiata seeds. Environ. Sci. Pollut. R. 2021;28:13221–8. https://doi.org/10.1007/s11356-020-11493-6.
Article
CAS
Google Scholar
Sehnal K, Hosnedlova B, Docekalova M, Stankova M, Uhlirova D, Tothova Z, et al. An assessment of the effect of green synthesized silver nanoparticles using sage leaves (Salvia officinalis L.) on germinated plants of maize (Zea mays L.). Nanomaterials. 2019;9(1550). https://doi.org/10.3390/nano9111550.
Hashemi M, Mousavi SM, Razavi SH, Shojaosadati SI. Comparison of submerged and solid state fermentation systems effects on the catalytic activity of Bacillus sp. KR-8104 α-amylase at different pH and temperatures. Ind. Crop. Prod. 2013;43:661–7. https://doi.org/10.1016/j.indcrop.2012.08.002.
Article
CAS
Google Scholar
Rowan KS. Photosynthetic pigments of algae, 1989, first ed. English. Britain: Cambridge University Press. .
Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006;89:27–41. https://doi.org/10.1007/sl11120-006-9065-9.
Article
CAS
PubMed
Google Scholar
Kannaujia R, Srivastave CM, Prasad V, Singh BN, Pandey V. Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiol. Bioch. 2019;142:460–71. https://doi.org/10.1016/j.plaphy.2019.08.008.
Article
CAS
Google Scholar
Ejazul I, Liu D, Li TQ, Yang X, Jin XF, Qaisar M, et al. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater. 2007;147:806–16. https://doi.org/10.1016/j.jhazmat.2007.01.117.
Article
CAS
Google Scholar
Baker CJ, Mock NM. An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue. Plant Cell Tiss. Org. 1994;39:7–12.
Article
Google Scholar
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971;44:276–87. https://doi.org/10.1016/0003-2697(71)90370-8.
Article
CAS
PubMed
Google Scholar
Aebi H. Catalase in vitro. Method Enzymol. 1984;105:121–6. https://doi.org/10.1016/S0076-6879(84)05016-3.
Article
CAS
Google Scholar
Hemeda HM, Klein BP. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J. Food Sci. 1990;55:184–5. https://doi.org/10.1111/j1365-2621.1990.tb06048.x.
Article
CAS
Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–7. https://doi.org/10.1007/BF00018060.
Article
CAS
Google Scholar
Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–98. https://doi.org/10.1016/0003-9861(68)90654-1.
Article
CAS
PubMed
Google Scholar
Vanlalveni C, Rajkumari K, Biswas A, Adhikari PR, Lalfakzuala R, Rokuhum L. Green synthesis of silver nanoparticles using Nostoc linckia and its antimicrobial activity: a novel biological approach. Bionanoscience. 2018;8:624–31. https://doi.org/10.1007/s12668-018-0520-9.
Article
Google Scholar
Verma A, Mehata MS. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sc. 2016;9:109–15. https://doi.org/10.1016/j.jrras.2015.11.001.
Article
CAS
Google Scholar
De Silva R, Warnasuriya P, De Silva N, Wijenayaka L, Jayawardana K, Yan M. Nanosilver rainbow: a rapid and facile method to tune different colours of nanosilver through the controlled synthesis of stable spherical silver nanoparticles. RSC ADV. 2016;6:48792–9. https://doi.org/10.1039/C6RA08336F.
Article
CAS
Google Scholar
Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–9. https://doi.org/10.1126/science.1077229.
Article
CAS
PubMed
Google Scholar
Cheng YW, Yin LY, Lin SH, Wiesner M, Bernhardt E, Liu J. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J. Phys. Chem. C. 2011;115:4425–32. https://doi.org/10.1021/jp109789j.
Article
CAS
Google Scholar
Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, Wiesner M, et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environ. Sci. Technol. 2011;45:2360–7. https://doi.org/10.1021/es103995x.
Article
CAS
PubMed
Google Scholar
Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Pla. 2019;25:313–26. https://doi.org/10.1007/s12298-018-0633-1.
Article
CAS
Google Scholar
Zhang HL, Du WC, Peralta-Videa JR, Gardea-Torresdey JL, White JC, Keller A, et al. Metabolomics reveals how Cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress. Environ. Sci. Technol. 2018;52:8016–26. https://doi.org/10.1021/acs.est.8b02440.
Article
CAS
PubMed
Google Scholar
Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009;43:9473–9. https://doi.org/10.1021/es901695c.
Article
CAS
PubMed
Google Scholar
Vannini C, Domingo G, Onelli E, Mattia FD, Bruni I, Marsoni M, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J. Plant Physiol. 2014;171:1142–8. https://doi.org/10.1016/j.jplph.2014.05.002.
Article
CAS
PubMed
Google Scholar
McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M. Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci. Total Environ. 2017;575:231–46. https://doi.org/10.1016/j.scitotenv.2016.10.041.
Article
CAS
PubMed
Google Scholar
Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010;2:763–70. https://doi.org/10.1039/c0nr00046a.
Article
CAS
PubMed
Google Scholar
Shi JP, Xu B, Sun X, Ma C, Y, CP, Zhang HW. Light induced toxicity reduction of silver nanoparticles to Tetrahymena Pyriformis: Effect of particle size. Aquat. Toxicol. 2013;132:53–60. https://doi.org/10.1016/j.aquatox.2013.02.001.
Article
CAS
PubMed
Google Scholar
Scherer MD, Sposito JC, Falco WF, Grisolia AB, Andrade LH, Lima SM, et al. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci. Total Environ. 2019;660:459–67. https://doi.org/10.1016/j.scitotenv.2018.12.444.
Article
CAS
PubMed
Google Scholar
Kumar VK, Muthukrishnan S, Rajalakshmi R. Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: An insight from antioxidative enzyme activities and genetic similarity studies. Curr. Plant Biol. 2020;23(100158). https://doi.org/10.1016/j.cpb.2020.100158.
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16:2346– 2353. Doi: https://doi.org/10.1088/0957-4484/16/10/059.
Sadak MS. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull. Natl. Res. Cent. 2019;43:38. https://doi.org/10.1186/s42269-019-0077-y.
Article
Google Scholar
Castro-González CG, Sánchez-Segura L, Gómez-Merino FC, Bello-Bello JJ. Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: transport and accumulation. Sci. Rep. 2019;9:10372. https://doi.org/10.1038/s41598-019-46828-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19:1357–61. https://doi.org/10.1021/la020835i.
Article
CAS
Google Scholar
Marchiol L, Mattiello A, Poscic F, Giordano C, Musetti R. In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res. Lett. 2014;9:101. https://doi.org/10.1186/1556-276X-9-101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qingqing Y, Shan Wanyu H, Ligang ZY, Yinzhu H, Yongguang Y, Yong L, et al. Uptake and transformation of silver nanoparticles and ions by Rice plants revealed by Dual Stable Isotope Tracing. Environ. Sci. Technol. 2019;53:625–33. https://doi.org/10.1021/acs.est.8b02471.
Article
CAS
Google Scholar
Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Env. Microbiol. Rep. 2014;7:40–50. https://doi.org/10.1111/1758-2229.12181.
Article
Google Scholar