Spinoni J, Barbosa P, Cherlet M, Forzieri G, McCormick N, Naumann G, et al. How will the progressive global increase of arid areas affect population and land-use in the 21st century? Glob Planet Chang. 2021;205:103597.
Article
Google Scholar
Bayat H, Moghadam AN. Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiol Plant. 2019;41(9):1–8.
Article
CAS
Google Scholar
Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol Mol Biol Plants. 2019;25(2):313–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bandara WARTW, Dissanayake CTM. Most tolerant roadside tree species for urban settings in humid tropics based on air pollution tolerance index. Urban Clim. 2021;37(100848):1-10.
Bijalwan P, Sharma M, Kaushik P. Review of the effects of drought stress on plants: A Systematic Approach. 2022; Preprints, 2022020014.
Ali EF, El-Shehawi AM, Ibrahim OHM, Abdul-Hafeez EY, Moussa MM, Hassan FAS. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiol Biochem. 2021;161:166–75.
Article
CAS
PubMed
Google Scholar
Hassan FAS, Ali EF, Alamer KH. Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena miller var. trigintipetala Dieck. S Afr J Bot. 2018;116:96–102.
Article
CAS
Google Scholar
Asgari-Targhi G, Iranbakhsh A, Ardebili ZO. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem. 2018;127:393–402.
Article
CAS
PubMed
Google Scholar
Arif Y, Siddiqui H, Hayat S. Role of chitosan nanoparticles in regulation of plant physiology under abiotic stress. In: Sustainable Agriculture Reviews 53: Springer; 2021. p. 399–413.
Chapter
Google Scholar
Priyaadharshini M, Sritharan N, Senthil A, Marimuthu S. Physiological studies on effect of chitosan nanoemulsion in pearl millet under drought condition. J Pharmacogn Phytochem. 2019;8:3304–7.
CAS
Google Scholar
Czékus Z, Poór P, Tari I, Ördög A. Effects of light and daytime on the regulation of chitosan-induced stomatal responses and defence in tomato plants. Plants. 2020;9(1):59.
Article
PubMed Central
CAS
Google Scholar
Li K, Xing R, Liu S, Li P. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. J Agric Food Chem. 2020;68(44):12203–11.
Article
CAS
PubMed
Google Scholar
Ngo D-H, Kim S-K. Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res. 2014;73:15–31.
Article
CAS
PubMed
Google Scholar
Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K. Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep. 2015;5(1):1–14.
Article
Google Scholar
Behboudi F, Tahmasebi Sarvestani Z, Kassaee MZ, Modares Sanavi SAM, Sorooshzadeh A, Ahmadi SB. Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. Journal of water and environmental. Nanotechnology. 2018;3(1):22–39.
CAS
Google Scholar
Hassan FAS, Ali E, Gaber A, Fetouh MI, Mazrou R. Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiol Biochem. 2021;162:291–300.
Article
CAS
PubMed
Google Scholar
Bandara S, Du H, Carson L, Bradford D, Kommalapati R. Agricultural and biomedical applications of chitosan-based nanomaterials. Nanomaterials. 2020;10(10):1903.
Article
CAS
PubMed Central
Google Scholar
Ghasemi Pirbalouti A, Malekpoor F, Salimi A, Golparvar A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci Hortic. 2017;217:114–22.
Article
CAS
Google Scholar
Bakhoum G, Sadak M, Tawfic M. Chitosan and chitosan nanoparticle effect on growth, productivity and some biochemical aspects of Lupinustermis L plant under drought conditions. Egypt J Chem. 2022;65(5):537–49.
Google Scholar
Behboudi F, Tahmasebi-Sarvestani Z, Kassaee MZ, Modarres-Sanavy SAM, Sorooshzadeh A, Mokhtassi-Bidgoli A. Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. J Plant Nutr. 2019;42(13):1439–51.
Article
CAS
Google Scholar
Rabêlo VM, Magalhães PC, Bressanin LA, Carvalho DT, Reis COD, Karam D, et al. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci Rep. 2019;9(1):1–13.
Article
CAS
Google Scholar
Afshari M, Rahimmalek M, Sabzalian MR, Bielecka M, Matkowski A, Talebi M. Changes in physiological, phytochemical traits and gene expression of two Perovskia species in response to water deficit. Sci Hortic. 2022;293:110747.
Article
CAS
Google Scholar
Ghaffari Z, Rahimmalek M, Sabzalian MR. Variations in essential oil composition and antioxidant activity in Perovskia abrotanoides Kar. Collected from different regions in Iran. Chem Biodivers. 2018;15(6):e1700565.
Article
PubMed
CAS
Google Scholar
Miroliaei M, Aminjafari A, Ślusarczyk S, Nawrot-Hadzik I, Rahimmalek M, Matkowski A. Inhibition of glycation-induced cytotoxicity, protein glycation, and activity of proteolytic enzymes by extract from Perovskia atriplicifolia roots. Pharmacogn Mag. 2017;13(Suppl 3):S676.
PubMed
PubMed Central
Google Scholar
Ellefson CL, Winger D. Xeriscape Colorado: The complete guide. Englewood, Colo: Westcliffe Publishers; 2004.
Helfand GE, Park JS, Nassauer JI, Kosek S. The economics of native plants in residential landscape designs. Landsc Urban Plan. 2006;78(3):229–40.
Article
Google Scholar
Hoyle H, Hitchmough J, Jorgensen A. Attractive, climate-adapted and sustainable? Public perception of non-native planting in the designed urban landscape. Landsc Urban Plan. 2017;164:49–63.
Article
Google Scholar
Karimian Z, Farashi A, Samiei L, Alizadeh M. Predicting potential sites of nine drought-tolerant native plant species in urban regions. J Appl Bot Food Qual. 2020;93.
Moolphuerk N, Lawson T, Pattanagul W. Chitosan mitigates the adverse effects and improves photosynthetic activity in rice (Oryza sativa L.) seedlings under drought condition. J Crop Improv. 2021:35:1–18.
Elansary H, Abdel-Hamid A, Yessoufou K, Al-Mana F, El-Ansary D, Mahmoud E, et al. Physiological and molecular characterization of water-stressed Chrysanthemum under robinin and chitosan treatment. Acta Physiol Plant. 2020;42(3):31,1-14.
Toscano S, Farieri E, Ferrante A, Romano D. Physiological and biochemical responses in two ornamental shrubs to drought stress. Front Plant Sci. 2016;7:645.
Article
PubMed
PubMed Central
Google Scholar
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem. 2017;110:194–209.
Article
CAS
PubMed
Google Scholar
Semida WM, Abdelkhalik A, Mohamed G, El-Mageed A, Taia A, El-Mageed A, et al. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants. 2021;10(2):421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heikal YM, El-Esawi MA, El-Ballat EM, Abdel-Aziz HMM. Applications of nanoparticles for mitigating salinity and drought stress in plants: an overview on the physiological, biochemical and molecular genetic aspects. N Z J Crop Hortic Sci. 2022;50:1–31.
Kole C, Kumar DS, Khodakovskaya MV. Plant nanotechnology: principles and practices: Springer; 2016.
Book
Google Scholar
Li R, He J, Xie H, Wang W, Bose SK, Sun Y, et al. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J Biol Macromol. 2019;126:91–100.
Article
CAS
PubMed
Google Scholar
Mahmoud SH, Salama DM, Abd El-Aziz ME. Effect of chitosan and chitosan nanoparticles on growth, productivity and chemical quality of green snap bean. Biosci Res. 2018;15(4):4307–21.
Google Scholar
Van SN, Minh HD, Anh DN. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis Agric Biotechnol. 2013;2(4):289–94.
Article
Google Scholar
Molnár Á, Rónavári A, Bélteky P, Szőllősi R, Valyon E, Oláh D, et al. ZnO nanoparticles induce cell wall remodeling and modify ROS/RNS signalling in roots of Brassica seedlings. Ecotoxicol Environ Saf. 2020;206:111158.
Article
PubMed
CAS
Google Scholar
Abbas Q, Yousaf B, Ali MU, Munir MAM, El-Naggar A, Rinklebe J, et al. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review. Environ Int. 2020;138:105646.
Article
CAS
PubMed
Google Scholar
Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, et al. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep. 2020;10(1):1–14.
Article
CAS
Google Scholar
Habibi G. Effect of salicylic acid on photochemistry and antioxidant capacity in Salvia nemorosa plants subjected to water stress. Iran J Plant Physiol. 2017;7(3):2075–82.
Google Scholar
Caser M, D’Angiolillo F, Chitarra W, Lovisolo C, Ruffoni B, Pistelli L, et al. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. To drought stress. Plant Growth Regul. 2018;84(2):383–94.
Article
CAS
Google Scholar
Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, et al. Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza. Front Plant Sci. 2017;8:52.
Article
PubMed
PubMed Central
Google Scholar
Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, et al. Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J Proteome Res. 2017;16(8):3039–52.
Article
CAS
PubMed
Google Scholar
Almeida L, Magalhães P, Karam D, Silva E, Alvarenga A. Chitosan application in the induction of water deficit tolerance in maize plants. Acta Scientiarum Agron. 2019;42:e42463.
Article
Google Scholar
Akhtar G, Faried HN, Razzaq K, Ullah S, Wattoo FM, Shehzad MA, et al. Chitosan-induced physiological and biochemical regulations confer drought tolerance in pot Marigold (Calendula officinalis L.). Agronomy. 2022;12(2):474.
Article
CAS
Google Scholar
Emami Bistgani Z, Siadat S, Bakhshandeh A, Ghasemi Pirbalouti A, Hashemi M. Morpho-physiological and phytochemical traits of (Thymus daenensis Celak.) in response to deficit irrigation and chitosan application. Acta Physiol Plant. 2017;39(10):1-13.
Hafez Y, Attia K, Alamery S, Ghazy A, Al-Doss A, Ibrahim E, et al. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy. 2020;10(5):630.
Article
CAS
Google Scholar
Liu Z, Liu T, Liang L, Li Z, Hassan MJ, Peng Y, et al. Enhanced photosynthesis, carbohydrates, and energy metabolism associated with chitosan-induced drought tolerance in creeping bentgrass. Crop Sci. 2020;60(2):1064–76.
Article
CAS
Google Scholar
Ghosh P, Kumar A, Bandyopadhyay K, Manna M, Mandal KG, Misra AK, et al. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. II. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Bioresour Technol. 2004;95:85–93.
Article
CAS
PubMed
Google Scholar
Abbaszadeh B, Sharifi Ashourabadi E, Lebaschi MH, Naderi Haji Bagherkandi M, Moghadami F. The effect of drought stress on Proline contents, soluble sugars, chlorophyll and relative water contents of balm (Melissa Officinalis L.). Iran J Med Aromat Plants. 2008;23(4 (38)):504–13.
Google Scholar
Abreu ME, Munné-Bosch S. Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot. 2008;64(2):105–12.
Article
CAS
Google Scholar
Caser M, Chitarra W, D'Angiolillo F, Perrone I, Demasi S, Lovisolo C, et al. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind Crop Prod. 2019;129:85–96.
Article
CAS
Google Scholar
Ma Y, Dias MC, Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci. 2020;11:591911.
Masjedi MH, Roozbahani A, Baghi M. Assessment effect of chitosan foliar application on Total chlorophyll and seed yield of wheat (Triticum aestivum L.) under water stress conditions. Journal of crop nutrition. Science. 2017;3(4):14–26.
Google Scholar
Dzung NA, Khanh VTP, Dzung TT. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym. 2011;84(2):751–5.
Article
CAS
Google Scholar
Rahman M, Mukta JA, Sabir AA, Gupta DR, Mohi-Ud-Din M, Hasanuzzaman M, et al. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS One. 2018;13(9):e0203769.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shehzad MA, Nawaz F, Ahmad F, Ahmad N, Masood S. Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicol Environ Saf. 2020;187(109841):1-11.
Khati P, Chaudhary P, Gangola S, Bhatt P, Sharma A. Nanochitosan supports growth of Zea mays and also maintains soil health following growth. 3Biotech. 2017;7:2–9.
Google Scholar
Vosoughi N, Gomarian M, Ghasemi Pirbalouti A, Khaghani S, Malekpoor F. Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage ( Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Ind Crop Prod. 2018;117:366-74.
Chandra S, Chakraborty N, Panda K, Acharya K. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. Plant Physiol Biochem. 2017;115:298–307.
Article
CAS
PubMed
Google Scholar
Naderi S, Fakheri B, Esmaeilzadeh BS, Kamaladini H. Ncreasing of phenyl alanine ammonia lyase (PAL) gene expression and phenylpropanoid compounds of basil (Ocimum basilicum) by chitosan. Modern Genetics J. 2014;9(3):259–66.
Google Scholar
Mehregan M, Mehrafarin A, Labbafi M, Naghdi Badi H. Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of stevia plant (Stevia rebaudiana Bertoni). J Med Plants. 2017;16:169–81.
Google Scholar
Mohammadi H, Aghaee Dizaj L, Aghaee A, Ghorbanpour M. Chitosan-mediated changes in dry matter, Total phenol content and essential oil constituents of two Origanum species under water deficit stress. Gesunde Pflanzen. 2021;73(2):181–91.
Article
CAS
Google Scholar
Rahmanzadeh Ishkeh S, Shirzad H, Asghari M, Alirezalu A, Pateiro M, Lorenzo JM. Effect of chitosan Nanoemulsion on enhancing the phytochemical contents, health-promoting components, and shelf life of raspberry (Rubus sanctus Schreber). Appl Sci. 2021;11:1–16.
Google Scholar
Katiyar D, Hemantaranjan A, Singh B. Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol. 2015;20(1):1-9.
Silva V, Singh RK, Gomes N, Soares BG, Silva A, Falco V, et al. Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants. 2020;9(2):178.
Article
CAS
PubMed Central
Google Scholar
Jiao Z, Li Y, Li J, Xu X, Li H, Lu D, et al. Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Res. 2012;55(3):293–301.
Article
CAS
Google Scholar
Karimi S, Abbaspour H, Sin J, Makarian H. Evaluation of drought stress and foliar chitosan on biochemical Characterices of Castor bean (Ricinus communis L.). research. J Biol Sci. 2012;7:117–22.
Google Scholar
Jabasingh C, Babu SS. Impact of water stress on protein content of Zea mays L. J Acad Ind Res. 2014;2(12):679–82.
Google Scholar
Li R, He J, Xie H, Wang W, Bose S, Sun Y, et al. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J Biol Macromol. 2019;126:91-100.
Pongprayoon W, Siringam T, Panya A, Roytrakul S. Application of chitosan in plant defense responses to biotic and abiotic stresses. Appl Sci Eng Progress. 2022;15(1):1-10.
Shirani Bidabadi S, Vander Weide J, Sabbatini P. Exogenous melatonin improves glutathione content, redox state and increases essential oil production in two Salvia species under drought stress. Sci Rep. 2020;10:1–12.
CAS
Google Scholar
Zhang L, Wu M, Teng Y, Jia S, Yu D, Wei T, et al. Overexpression of the glutathione peroxidase 5 (RcGPX5) gene from rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza. Front Plant Sci. 1950;2019:9.
Google Scholar
Abd Elbar OH, Farag RE, Shehata SA. Effect of putrescine application on some growth, biochemical and anatomical characteristics of Thymus vulgaris L. under drought stress. Ann Agric Sci. 2019;64(2):129–37.
Article
Google Scholar
Babaei K, Moghaddam M, Farhadi N, Ghasemi Pirbalouti A. Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Sci Hortic. 2021;284(110116):1-9.
Chiappero J, Cappellari LDR, Palermo TB, Giordano W, Khan N, Banchio E. Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Ind Crop Prod. 2021;167:113541.
Article
CAS
Google Scholar
Abdel-Aziz H. Effect of priming with chitosan nanoparticles on germination, seedling growth and antioxidant enzymes of broad beans. Catrina: the. Int J Environ Sci. 2019;18(1):81–6.
Google Scholar
Hameed A, Sheikh MA, Farooq T, Basra S, Jamil A. Chitosan priming enhances the seed germination, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica. 2013;57:97–110.
CAS
Google Scholar
Ali EF, Issa AA, Al-Yasi HM, Hessini K, Hassan FAS. The efficacies of 1-methylcyclopropene and chitosan nanoparticles in preserving the postharvest quality of damask rose and their underlying biochemical and physiological mechanisms. Biology. 2022;11(2):242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciríaco da Silva E, Nogueira RJ, Vale F, Araújo F, Pimenta M. Stomatal changes induced by intermittent drought in four umbu tree genotypes. Braz J Plant Physiol. 2009;1:33–42.
Article
Google Scholar
Wang S-G, Jia S-S, Sun D-Z, FAN H, Chang X-P, Jing R-L. Mapping QTLs for stomatal density and size under drought stress in wheat (Triticum aestivum L.). J Integr Agric. 2016;15(9):1955–67.
Article
CAS
Google Scholar
Caine R, Yin X, Sloan J, Harrison E, Mohammed U, Fulton T, et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol. 2018;221(1):371-84.
Verma K, Zeng X-P, Zeng Y, Li D-M, Guo D-J, Rajput V, et al. Characteristics of leaf stomata and their relationship with photosynthesis in Saccharum officinarum under drought and silicon application. ACS. Omega. 2020;5(37):24145-53.
Pitoyo ARI, Hani MR, Anggarwulan E. Application of chitosan spraying on acclimatization success of tiger orchid (Grammatophyllum scriptum) plantlets. Nusantara. Bioscience. 2015;7(2):179-85.
Lee S, Choi H, Suh S, Doo I, Oh KY, Choi E, et al. Oligogalacturonic acid and chitosan reduce Stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol. 1999;121:147–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasanah Y, Sembiring M. Role of elicitors in chlorophyll content and Stomatal density of soybean cultivars by foliar application. J Agron. 2018;17:112–7.
Article
CAS
Google Scholar
Abdel-Aziz HMM, Soliman MI, Abo Al-Saoud AM, El-Sherbeny GA. Waste-derived NPK Nanofertilizer enhances growth and productivity of Capsicum annuum L. Plants. 2021;10(6):1144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aziz MA, Esyanti RR, Meitha K, Dwivany FM, Chotimah HH. Chitosan suppresses the expression level of WRKY17 on red chili (Capsicum annuum) plant under drought stress. Indones J Biotechnol. 2020;25(1):52–60.
Article
Google Scholar
Ghadi A, Mahjoub S, Tabandeh F, Talebnia F. Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Caspian J Intern Med. 2014;5(3):156.
PubMed
PubMed Central
Google Scholar
Li B, Wang X, Chen R, Huangfu W, Xie G. Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydr Polym. 2008;72(2):287–92.
Article
CAS
Google Scholar
Datta A, Sindel BM, Kristiansen P, Jessop RS, Felton WL. The effects of temperature and soil moisture on chickpea (Cicer arietinum L.) genotype sensitivity to isoxaflutole. J Agron Crop Sci. 2009;195(3):178–85.
Article
CAS
Google Scholar
Pathan AK, Bond J, Gaskin RE. Sample preparation for SEM of plant surfaces. Mater Today. 2010;12:32–43.
Article
Google Scholar
Lichtenthaler HK. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J Plant Physiol. 1987;131(1–2):101–10.
Article
CAS
Google Scholar
Ritchie SW, Nguyen HT, Holaday AS. Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 1990;30(1):105–11.
Article
Google Scholar
Wang Z, Huang B. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci. 2004;44(5):1729–36.
Article
CAS
Google Scholar
Wojdyło A, Oszmiański J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007;105(3):940–9.
Article
CAS
Google Scholar
Chang C-C, Yang M-H, Wen H-M, Chern J-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):178-82.
Kochert G. Carbohydrate determination by the phenol-sulfuric acid method. In: Handbook of phycological methods, Phycological and biochemical methods; 1978. p. 95.
Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–7.
Article
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article
CAS
PubMed
Google Scholar
Afjeh MEA, Pourahmad R, Akbari-Adergani B, Azin M. Characteristics of glucose oxidase immobilized on magnetic chitosan nanoparticles. Food Sci Technol. 2020;40:68–75.
Article
Google Scholar
Giannopolitis CN, Ries SK: Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol. 1977;59(2):315–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raymond J, Rakariyatham N, Azanza JL. Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry. 1993;34(4):927–31.
Article
CAS
Google Scholar
Hemeda HM, Klein BP. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci. 1990;55(1):184–5.
Article
CAS
Google Scholar