Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203:32–43.
Article
PubMed
Google Scholar
Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions, shaping the evolution of the plant immune response. Cell. 2006;124:803–14.
Article
CAS
PubMed
Google Scholar
Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses, from genes to the field. J Exp Bot. 2012;63:3523–43.
Article
CAS
PubMed
Google Scholar
Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007;3:408–14.
Article
CAS
PubMed
Google Scholar
Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biot. 2015;148:63–106.
CAS
Google Scholar
Monson RK, Weraduwage SM, Rosenkranz M, Schnitzler JP, Sharkey TD. Leaf isoprene emission as a trait that mediates the growth–defense tradeoff in the face of climate stress. Oecologia. 2021;197:885–902.
Article
PubMed
Google Scholar
Ninkovic V, Rensing M, Dahlin I, Markovic D. Who is my neighbor? Volatile cues in plant interactions. Plant Signal Behav. 2019;14:1559–2324.
Article
CAS
Google Scholar
Sharifi R, Ryu CM. Social networking in crop plants, wired and wireless cross–plant communications. Plant Cell Environ. 2021;44:1095–110.
Article
CAS
PubMed
Google Scholar
Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, Doorn MM, et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun. 2015;6:6279.
Article
CAS
PubMed
Google Scholar
Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)–β–caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2011;193:997–1008.
Article
PubMed
CAS
Google Scholar
Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, et al. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell. 2017;29:1440–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wenig M, Ghirardo A, Sales JH, Pabst ES, Breitenbach HH, Antritter F, et al. Systemic acquired resistance networks amplify air-borne defense cues. Nat Commun. 2019;10:3813.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Li JR, Dong YM, Hao HP, Ling ZY, Bai HT, et al. Time–series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender. BMC Plant Biol. 2019;19(1):313.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamagiwa Y, Inagaki Y, Ichinose Y, Toyoda K, Hyakumachi M, Shiraishi T. Talaromyces wortmannii, FS2 emits β–caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol. 2011;77:336–41.
Article
CAS
Google Scholar
Huang X, Li K, Jin C, Zhang S. ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Sci Rep. 2015;5:17620.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagashima A, Higaki T, Koeduka T, Ishigami K, Hosokawa S, Watanabe H, et al. Transcriptional regulators involved in responses to volatile organic compounds in plants. J Biol Chem. 2019;15:2256–66.
Article
Google Scholar
Frank L, Wenig M, Ghirardo A, Krol A, Vlot AC, Schnitzler JP, et al. Isoprene and β–caryophyllene confer plant resistance via different plant internal signalling pathways. Plant Cell Environ. 2021;44:1151–64.
Article
CAS
PubMed
Google Scholar
Liao P, Hemmerlin A, Bach TJ, Chy ML. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv. 2016;34:697–713.
Article
CAS
PubMed
Google Scholar
Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol Plant. 2012;5:318–33.
Article
PubMed
CAS
Google Scholar
Chen X, Wang X, Li Z, Kong L, Liu G, Fu J, et al. Molecular cloning, tissue expression and protein structure prediction of the porcine 3–hydroxy–3–methylglutaryl–coenzyme a reductase (HMGR) gene. Gene. 2012;495:170–7.
Article
CAS
PubMed
Google Scholar
Ogura K, Koyama T. Enzymatic aspects of isoprenoid chain elongation. Chem Rev. 1998;98:1263–76.
Article
CAS
PubMed
Google Scholar
Vimolmangkang S, Han Y, Wei G, Korban S. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biol. 2013;13(1):176.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xi W, Feng J, Liu Y, Zhang S, Zhao G. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin. BMC Plant Biol. 2019;19:287.
Mertens J, Pollier J, Vanden BR, López Vidriero I, Franco-Zorrilla JM, Goossens A. The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula. Plant Physiol. 2016;170(1):194–210.
Article
CAS
PubMed
Google Scholar
Huang D, Dai W. Molecular characterization of the basic helix–loop–helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus. Plant Cell Rep. 2015;34(7):1211–24.
Article
CAS
PubMed
Google Scholar
Yang CQ, Fang X, Mao YB, Wang LJ, Chen XY. Transcriptional regulation of plant secondary metabolism. J Integ Plant Biol. 2012;54(10):703–12.
Article
CAS
Google Scholar
Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell. 2012;24:2635–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aslam MZ, Lin X, Li X, Yang N, Chen L. Molecular cloning and functional characterization of CpMYC2 and CpBHLH13 transcription tactors from Wintersweet (Chimonanthus praecox L.). Plants. 2020;9:785.
Article
CAS
PubMed Central
Google Scholar
Xu J, Herwijnen ZO, Dräger DB, Sui C, Haring MA, Schuurink RC. SlMYC1 regulates type vi glandular trichome formation and terpene biosynthesis in tomato glandular cells. Plant Cell. 2018;30:2988–3005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe H, Urao T, Ito T, Seki M, Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15(1):63–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majida I, Kumarb A, Abbasa NA. Basic helix loop helix transcription factor, AaMYC2-like positively regulates artemisinin biosynthesis in Artemisia annua L. Ind Crop Prod. 2019;128:115–25.
Article
CAS
Google Scholar
Lenkal SK, Nims E, Vongpaseuth K, Boshar RA, Roberts SC, Walker EL. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. Front Plant Sci. 2015;115:1–12.
Google Scholar
Yin J, Li X, Zhan YG, Li Y, Qu Z, Sun L, et al. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch. BMC Plant Biol. 2017;17:214.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adal AM, Sarker LS, Malli RPN, Liang P, Mahmoud SS. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula). Planta. 2019;249:271–90.
Article
CAS
PubMed
Google Scholar
Łyczko J, Jałoszyński K, Surma M, Masztalerz K, Szumny A. Hs–SPME analysis of true lavender (lavandula angustifolia mill.) leaves treated by various drying methods. Molecules. 2019;24(4):759–64.
Article
CAS
Google Scholar
Wesołowska A, Jadczak P, Kulpa D, Przewodowski W. Gas chromatography-mass spectrometry (GC-MS) analysis of essential oils from AgNPs and AuNPs elicited Lavandula angustifolia in vitro cultures. Molecules. 2019;24:606.
Article
PubMed Central
CAS
Google Scholar
Li JR, Wang YM, Dong YM, Zhang WY, Wang D, Bai HT, et al. Correction, the chromosome–based lavender genome provides new insights into lamiaceae evolution and terpenoid biosynthesis. Horticlture Res. 2021;8:53.
Article
CAS
Google Scholar
Hou L, Liu W, Li Z, Huang C, Fang XL, Wang Q, et al. Identification and expression analysis of genes responsive to drought stress in peanut. Russ J Plant Physiol. 2014;61(6):842–52.
Article
CAS
Google Scholar
Shen X, Wang Z, Song X, Xu J, Jiang C, Zhao Y, et al. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol. 2014;86(3):303–17.
Article
CAS
PubMed
Google Scholar
Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, et al. Involvement of the basic helix–loop–helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem. 2005;69(5):1042–4.
Article
CAS
PubMed
Google Scholar
Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Sang SI, et al. OsbHLH148, a basic helix–loop–helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J. 2011;65(6):907–21.
Article
CAS
PubMed
Google Scholar
Wang F, Zhu H, Chen D, Li Z, Peng R, Yao Q. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tiss Org. 2016;125:387–98.
Article
CAS
Google Scholar
Man L, Xiang D, Wang L, Zhang W, Wang X, Qi G. Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice. Protoplasma. 2017;254:945–56.
Article
CAS
PubMed
Google Scholar
Li JL, Wang T, Han J, Ren ZH. Genome-wide identification and characterization of cucumber bHLH family genes and the functional characterization of CsbHLH041 in NaCl and ABA tolerance in Arabidopsis and cucumber. BMC Plant Biol. 2020;20:272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moerkercke V, Steensma P, Gariboldi I, Espoz J, Purnama PC, Schweizer F, et al. The basic helix–loop–helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. Plant J. 2016;88(1):3–12.
Article
PubMed
CAS
Google Scholar
Zhang JX, Zhou LB, Zheng XY, Zhang JJ, Yang L, Tan RH, et al. Overexpression of SmMYB9b enhances tanshinone concentration in salvia miltiorrhiza hairy roots. Plant Cell Rep. 2017;36:1297–309.
Article
PubMed
CAS
Google Scholar
Hijaz F, Nehela Y, Jones SE, Dutt M, Grosser JW, Manthey JA, et al. Metabolically engineered anthocyanin-producing lime provides additional nutritional value and antioxidant potential to juice. Plant Biotechnol Rep. 2018;12:329–46.
Article
Google Scholar
Patricia FC, Andrea C, Gemma FB, Chico JM, Selena GI, Jan G, et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 2011;23:701–15.
Article
CAS
Google Scholar
Arimura G, Ozawa R, Horiuchi J, Nishioka T, Takabayashi J. Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol. 2001;29:1049–61.
Article
CAS
Google Scholar
Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, et al. Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun. 2015;6:6273.
Article
CAS
PubMed
Google Scholar
Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol. 2008;180:722–34.
Article
CAS
PubMed
Google Scholar
Helms AM, De Moraes CM, Tröger A, Alborn HT, Francke W, Tooker JF, et al. Identification of an insectproduced olfactory cue that primes plant defenses. Nat Commun. 2017;8:337.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kende H, Zeevaart JAD. The five “classical” plant hormones. Plant Cell. 1997;9:1197–210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan T, Chen M, Shen Q, Li L, Fu X, Pan Q. Homeodomain protein 1 is required for jasmonate–mediated glandular trichome initiation in Artemisia annua. New Phytol. 2016;213:1145–55.
Article
PubMed
CAS
Google Scholar
Chen TT, Li YP, Xie LH, Hao XL, Liu H, Qin W, et al. AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance to pseudomonas syringae in Artemisia annua. Horticlture Res. 2021;8:217.
Article
CAS
Google Scholar
Matarese F, Cuzzola A, Scalabrelli G, D’Onofrio C. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera. Phytochemistry. 2014;105:12–24.
Article
CAS
PubMed
Google Scholar
Jin J, Kim MJ, Dhandapani S, Tjhang JG, Yin JL, Wong L, et al. The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. J Exp Bot. 2015;66:3959–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clough SJ, Bent AF. Floral dip, a simplified method for agrobacterium–mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
PubMed
Google Scholar
HOrsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT. A simple and general method for hybridization revealed the expected. Science. 1985;227:1229–31.
Article
Google Scholar
Woronuk G, Demissie Z, Rheault M, Mahmoud S. Biosynthesis and therapeutic properties of Lavandula essential oil constituents. Planta Med. 2011;77:7–15.
Article
CAS
PubMed
Google Scholar
Kiran BGD, Sharma A, Singh B. Volatile composition of lavandula angustifolia produced by different extraction techniques. J Essent Oil Res. 2016;28(6):489–500.
Article
CAS
Google Scholar
He Z. Guidance to experiment on chemical control in crop plants. Beijing: Beijing Agricultural University publication; 1993.
Google Scholar
Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Water deficit induced senescence and its relationship to the remobilization of pre–stored carbon in wheat during grain filling. Agron J. 2001;93:196–206.
Article
CAS
Google Scholar