Chinnusamy V, Zhu JK, Sunkar R. Gene regulation during cold stress acclimation in plants. Methods Mol Biol. 2010;639:39–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jan N, Hussain MU, Andrabi KI. Cold resistance in plants: A mystery unresolved. Electron J Biotechn. 2009;12:1–15.
Google Scholar
Shi YT, Ding YL, Yang SH. Molecular Regulation of CBF Signaling in Cold Acclimation. Trends Plant Sci. 2018;23:623–37.
Article
CAS
PubMed
Google Scholar
Lin QJ, Gao Y, Wu XX, Ni XY, Chen RZ, Xuan YH, Li TY. Evaluation of resistance to wheat stem rust and identification of resistance genes in wheat lines from Heilongjiang province. PeerJ. 2021;9:e10580.
Article
PubMed
PubMed Central
Google Scholar
Thomashow MF. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:571–99.
Article
CAS
PubMed
Google Scholar
Ding YL, Shi YT, Yang SH. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019;222:1690–704.
Article
PubMed
Google Scholar
Chattopadhyay MK. Mechanism of bacterial adaptation to low temperature. J Biosci. 2006;31:157–65.
Article
CAS
PubMed
Google Scholar
Shi YT, Ding YL, Yang SH. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol. 2015;56(1):7–15.
Article
CAS
PubMed
Google Scholar
Dong WK, Ma X, Jiang HY, Zhao CX, Ma HL. Physiological and transcriptome analysis of Poa pratensis var anceps cv. Qinghai in response to cold stress. BMC Plant Biol. 2020;20(1):362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang F, Ji SJ, Wei BD, Cheng SC, Wang YJ, Hao J, Wang SY, Zhou Q. Transcriptome analysis of postharvest blueberries (Vaccinium corymbosum ’Duke’) in response to cold stress. BMC Plant Biol. 2020;20(1):80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou HY, He Y, Zhu YS, Li MY, Song S, Bo WH, Li YY, Pang XM. Comparative transcriptome profiling reveals cold stress responsiveness in two contrasting Chinese jujube cultivars. BMC Plant Biol. 2020;20(1):240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ke LP, Lei WX, Yang WG, Wang JY, Gao JF, Cheng JH, Sun YQ, Fan ZX, Yu DL. Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC Plant Biol. 2020;20(1):62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dasgupta P, Das A, Datta S, Banerjee I, Tripathy S, Chaudhuri S. Understanding the early cold response mechanism in IR64 indica rice variety through comparative transcriptome analysis. BMC Genomics. 2020;21(1):425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YY, Wu C, Hu X, Gao HY, Wang Y, Luo H, Cai S, Li GW, Zheng YS, Lin CT, Zhu Q. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Tree Physiol. 2020;40(4):538–56.
Article
CAS
PubMed
Google Scholar
Jiang CJ, Zhang H, Ren JY, Dong JL, Zhao XH, Wang XG, Wang J, Zhong C, Zhao SL, Liu XB, Gao SB, Yu HQ. Comparative Transcriptome-Based Mining and Expression Profiling of Transcription Factors Related to Cold Tolerance in Peanut. Int J Mol Sci. 2020;21(6):1921.
Article
CAS
PubMed Central
Google Scholar
Iquebal MA, Sharma P, Jasrotia RS, Jaiswal S, Kaur A, Saroha M, Angadi UB, Sheoran S, Singh R, Singh GP. RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep. 2019;9(1):13917.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma J, Zhang Y, Wang HG, Zhen WC, Li RQ. Differentially Expressed Genes and Enriched Pathways During Drought-Sensitive Period Under Field Conditions in Bread Wheat. Plant Mol Biol Rep. 2019;37:389–400.
Article
CAS
Google Scholar
Zhao Y, Zhou M, Xu K, Li JH, Yang XJ. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. Crop J. 2019;7(6):857–66.
Article
Google Scholar
Díaz ML, Soresi DS, Basualdo J, Cuppari SJ, Carrera A. Transcriptomic response of durum wheat to cold stress at reproductive stage. Mol Biol Rep. 2019;46(2):2427–45.
Article
CAS
PubMed
Google Scholar
Aleliūnas A, Jakūn K, Statkeviiūt G, Vaitkeviiūt G, Armoniene R. Transcriptome changes triggered by a short-term low temperature stress in winter wheat. Zemdirbyste. 2020;107(4):329–36.
Article
Google Scholar
Kumar RR, Goswami S, Shamim M, Dubey K, Singh K, Singh S, Kala YK, Niraj RRK, Sakhrey A, Singh GP. Exploring the heat-responsive chaperones and microsatellite markers associated with terminal heat stress tolerance in developing wheat. Funct Integr Genomic. 2017;17(6):621–40.
Article
CAS
Google Scholar
Derakhshani B, Ayalew H, Mishina K, Tanaka T, Kawahara Y, Jafary H, Oono Y. Comparative Analysis of Root Transcriptome Reveals Candidate Genes and Expression Divergence of Homoeologous Genes in Response to Water Stress in Wheat. Plants. 2020;9(5):596.
Article
CAS
PubMed Central
Google Scholar
Kruse EB, Carle SW, Wen N, Skinner DZ, Murray TD, Garland-Campbell KA, Carter AH. Genomic Regions Associated with Tolerance to Freezing Stress and Snow Mold in Winter Wheat. G3. 2017;7(3):775–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv Y, Song CH, Lu QW, Tian Y, Li HD, Zhang D, Yu J, Xu QH, Cang J. The Expression Characteristics of Transcription Factors Regulated by Exogenous ABA in Winter Wheat (Triticum aestivum) under Cold Stress. Russ J Plant Physiol. 2018;65(6):842–8.
Article
CAS
Google Scholar
Tian Y, Peng KK, Bao YZ, Zhang D, Jing C. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase genes of winter wheat enhance the cold tolerance of transgenic Arabidopsis. Plant Physiol Biochem. 2021;161(3):86–97.
Article
CAS
PubMed
Google Scholar
Peng KK, Tian Y, Jing C, Yu J, Tan YG. Overexpression of TaFBA-A10 from Winter Wheat Enhances Freezing Tolerance in Arabidopsis thaliana. J Plant Growth Regul. 2021;41:314–26.
Article
CAS
Google Scholar
Yadav SK. Cold stress tolerance mechanisms in plants. A review Agron Sustain Dev. 2010;30(3):515–27.
Article
CAS
Google Scholar
Eremina M, Rozhon W, Poppenberger B. Hormonal control of cold stress responses in plants. Cell Mol Life Sci. 2015;73(4):1–14.
Google Scholar
Bao YZ, Xing JP, Liang Y, Ren ZP, Fu LS, Yu J, Wang DJ, Zhang D, Xu QH, Cang J. Analysis of overwintering indexes of winter wheat in alpine regions and establishment of a cold resistance model. Field Crops Res. 2022;275:108347.
Article
Google Scholar
Knight MR, Knight H. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New phytol. 2012;195(4):737–51.
Article
CAS
PubMed
Google Scholar
Wilkins KA, Matthus E, Swarbreck SM, Davies JM. Calcium-Mediated Abiotic Stress Signaling in Roots. Front Plant Sci. 2016;7:1296.
Article
PubMed
PubMed Central
Google Scholar
Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah BW. Calcium signatures and signaling events orchestrate plant-microbe interactions. Curr Opin Plant Biol. 2017;38:173–83.
Article
CAS
PubMed
Google Scholar
Shi SJ, Li SG, Asim M, Mao JJ, Xu DZ, Ullah Z, Liu GS, Wang Q, Liu HB. The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and Their Roles in Plant Growth Regulation and Abiotic Stress Responses. Int J Mol Sci. 2018;19(7):1900.
Article
CAS
PubMed Central
Google Scholar
Bai B, Wu J, Sheng WT, Zhou B, Zhou LJ, Zhuang W, Yao DP, Deng QY. Comparative Analysis of Anther Transcriptome Profiles of Two Different Rice Male Sterile Lines Genotypes under Cold Stress. Int J Mol Sci. 2015;16(5):11398–416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YS, Wang XR, Li Y, Zhang YJ, Gou ZW, Qi XS, Zhang JL. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Genes. 2020;11(8):881.
Article
CAS
PubMed Central
Google Scholar
Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ. 2017;40(7):1197–213.
Article
CAS
PubMed
Google Scholar
Lv XZ, Li HZ, Chen XX, Xiang X, Guo ZX, Yu JQ, Zhou YH. The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. J Exp Bot. 2018;69(16):4127–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Xu CJ, Zhu YF, Zhang L, Chen TY, Zhou F, Chen H, Lin YJ. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. J Integr Plant Biol. 2018;60(2):173–88.
Article
CAS
PubMed
Google Scholar
Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP. Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta. 2014;239(1):187–98.
Article
CAS
PubMed
Google Scholar
Sun T, Wang Y, Wang M, Li TT, Zhou Y, Wang XT, Wei SY, He GY, Yang GX. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biol. 2015;15:269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao JJ, Manik SM, Shi SJ, Chao JT, Jin YR, Wang Q, Liu HB. Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. Gene. 2016;7(9):62.
Article
CAS
Google Scholar
Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem. 2010;285(10):7119–26.
Article
CAS
PubMed
Google Scholar
Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell. 2004;15(1):141–52.
Article
CAS
PubMed
Google Scholar
Li H, Ding YL, Shi YT, Zhang XY, Zhang SQ, Gong ZZ, Yang SH. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Dev cell. 2017;43(5):630–42.
Article
CAS
PubMed
Google Scholar
Waititu JK, Cai Q, Sun Y, Sun Y, Li C, Zhang C, Liu J, Wang H. Transcriptome Profiling of Maize (Zea mays L.) Leaves Reveals Key Cold-Responsive Genes, Transcription Factors, and Metabolic Pathways Regulating Cold Stress Tolerance at the Seedling Stage. Genes. 2021;12(10):1638.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng GM, Zhang LY, Wang HT, Lu JH, Wei HL, Yu SX. Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton (Gossypium hirsutum L) Genotypes at the Seedling Stage. Int J Mol Sci. 2020;21(14):5095.
Article
CAS
PubMed Central
Google Scholar
Kawarazaki T, Kimura S, Iizuka A, Hanamata S, Nibori H, Michikawa M, Imai A, Abe M, Kaya H, Kuchitsu K. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochim Biophys Acta. 2013;1833(12):2775–80.
Article
CAS
PubMed
Google Scholar
Mehrotra S, Verma S, Kumar S, Kumari S, Mishra BN. Transcriptional regulation and signalling of cold stress response in plants: An overview of current understanding. Environ Exp Bot. 2020;180:104243.
Article
CAS
Google Scholar
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998;16(4):433–42.
Article
CAS
PubMed
Google Scholar
Wu PX, Li YC, Li XX, Liu WQ, Jun M, Lu TT, Nian SX, Jiang T. Differential Regulatory Mechanism of CBF Regulon Between Nipponbare(japonica) and 93–11(indica) During Cold Acclimation. Chin J Rice Sci. 2012;20(3):165–72.
Google Scholar
Luo C, Liu H, Ren JN, Chen DL, Cheng X, Sun W, Hong B, Huang CL. Cold-inducible expression of an Arabidopsis thaliana AP2 transcription factor gene, AtCRAP2, promotes flowering under unsuitable low-temperatures in chrysanthemum. Plant Physiol Biochem. 2020;146:220–30.
Article
CAS
PubMed
Google Scholar
Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomics. 2007;277(5):533–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutton F, Chen DG, Ge X, Kenefick D. Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and - susceptible, winter wheat mutant lines. BMC Plant Biol. 2009;9:34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fursova OV, Pogorelko GV, Tarasov VA. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene. 2009;429(1–2):98–103.
Article
CAS
PubMed
Google Scholar
Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A. 2006;103(21):8281–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell. 2007;19(4):1403–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang ZB, Zhu JK. OST1 phosphorylates ICE1 to enhance plant cold tolerance. Sci China Life Sci. 2015;58(3):317–8.
Article
PubMed
Google Scholar
Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem. 2006;281(49):37636–45.
Article
CAS
PubMed
Google Scholar
Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M. Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep. 2008;27(10):1677–86.
Article
CAS
PubMed
Google Scholar
Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J. 2004;37(1):115–27.
Article
CAS
PubMed
Google Scholar
Li H, Yang Z, Zeng QW, Wang SB, Luo YW, Huang Y, Xin YC, He NJ. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. Hortic Res. 2020;7(1):83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerepesi IlDiko, Galiba G. Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop Sci. 2000;40(2):482–482.
Article
CAS
Google Scholar
Xu HX, Li XY, Chen JW. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets. J Plant Res. 2017;130(5):893–907.
Article
CAS
PubMed
Google Scholar
Kinoshita J, Kawamori R. Gluconeogenesis and glycolysis. Nihon Rinsho. 2002;60(Suppl 7):121–8.
PubMed
Google Scholar
Gaete-Loyola J, Lagos C, Beltran MF, Valenzuela S, Emhart V, Fernandez M. Transcriptome profiling of Eucalyptus nitens reveals deeper insight into the molecular mechanism of cold acclimation and deacclimation process. Tree Genet Genomes. 2017;13(2):37.
Article
Google Scholar
Shen Q, Zhang SP, Liu SD, Chen J, Ma HJ, Cui ZQ, Zhang XM, Ge CW, Liu RH, Li Y, Zhao XH, Yang GZ, Song MZ, Pang CY. Comparative Transcriptome Analysis Provides Insights into the Seed Germination in Cotton in Response to Chilling Stress. Int J Mol Sci. 2020;21(6):2067.
Article
CAS
PubMed Central
Google Scholar
Zhang Q, Shan CH, Ning M, Zhao XX, Tang FX. Transcriptome Profiling of Gold Queen Hami Melons under Cold Stress. Russ J Plant Physiol. 2020;67(5):888–97.
Article
CAS
Google Scholar
Ramazan S, Qazi HA, Dar ZA, John R. Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiol Mol Biol Plants. 2021;27(6):1395–412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wani UM, Majeed ST, Raja V, Wani ZA, Jan N, Andrabi KI, John R. Ectopic expression of a novel cold-resistance protein 1 from Brassica oleracea promotes tolerance to chilling stress in transgenic tomato. Sci Rep. 2021;11(1):16574.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Chen L, Shi WL, Xu X, Li ZJ, Liu TF, He Q, Xie CH, Nie BH, Song BT. Comparative transcriptome reveals distinct starch-sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food chem. 2021;334:127550.
Article
CAS
PubMed
Google Scholar
Jiang G, Hassan MA, Muhammad N, Arshad M, Chen X, Xu Y, Xu H, Ni QQ, Liu BB, Yang WK, Li JC. Comparative Physiology and Transcriptome Analysis of Young Spikes in Response to Late Spring Coldness in Wheat (Triticum aestivum L.). Front Plant Sci. 2022;13:811884.
Article
PubMed
PubMed Central
Google Scholar
Wang CG, Zhang MY, Zhou JJ, Gao X, Zhu SD, Yuan LY, Hou XL, Liu TK, Chen GH, Tang XY, Shan GL, Hou JF. Transcriptome analysis and differential gene expression profiling of wucai (Brassica campestris L.) in response to cold stress. BMC Genomics. 2022;23(1):137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao YZ, Yang N, Meng J, Wang D, Fu LS, Wang J, Cang J. Adaptability of winter wheat Dongnongdongmai 1 (Triticum aestivum L) to overwintering in alpine regions. Plant biol (Stuttg). 2021;23(3):445–55.
Article
CAS
Google Scholar
Huang X, Liang YS, Zhang BQ, Song XP, Li YR, Li CN, Qin ZQ, Li DW, Wei JG, Wu JM. Comparative Transcriptome Analysis Reveals Potential Gene Modules Associated with Cold Tolerance in Sugarcane (Saccharum officinarum L.). J Plant Growth Regul. 2021; https://doi.org/10.1007/s00344-021-10437-9.
Liu LJ, Cang J, Yu J, Wang X, Huang R, Wang JF, Lu BW. Effects of Exogenous Abscisic Acid on Carbohydrate Metabolism and the Expression Levels of Correlative Key Enzymes in Winter Wheat under Low Temperature. Biosci Biotech Bioch. 2013;77(3):516–25.
Article
CAS
Google Scholar