Giuntini D, Graziani G, Lercari B, Fogliano V, Soldatini GF, Ranieri A. Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. J Agric Food Chem. 2005;53:3174–81.
Article
CAS
PubMed
Google Scholar
Saito T, Takagi M, Tezuka T, Ogawara T, Wari D. Augmenting Nesidiocoris tenuis (Nesidiocoris) with a factitious diet of Artemia cysts to control Bemisia tabaci (Gennadius) on tomato plants under greenhouse conditions. Insects. 2021;12(3):265.
Article
PubMed
PubMed Central
Google Scholar
Bano A, Muqarab R. Plant defence induced by PGPR against Spodoptera litura in tomato (Solanum lycopersicum L.). Plant Biol. 2017;19:406–12.
Article
CAS
PubMed
Google Scholar
Tong H, Su Q, Zhou X, Bai L. Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. J Pest Sci. 2013;86(3):599–609.
Article
Google Scholar
Shad SA, Sayyed AH, Fazal S, Saleem MA, Zaka SM, Ali M. Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura fab. (Lepidoptera: Noctuidae) J Pest Sci. 2012;85(1):153–62.
Google Scholar
Dang K, Doggett SL, Veera Singham G, Lee CY. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasit Vectors. 2017;10(1):318.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heckel DG. Insecticide resistance after silent spring. Science. 2012;337:1612–4.
Article
PubMed
Google Scholar
Gould F, Brown ZS, Kuzma J. Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science. 2018;360:728–32.
Article
CAS
PubMed
Google Scholar
Larousse M, Rancurel C, Syska C, Palero F, Etienne C, Industri B, et al. Tomato root microbiota and Phytophthora parasitica-associated disease. Microbiome. 2017;5:56.
Article
PubMed
PubMed Central
Google Scholar
Yang JW, Yi HS, Kim H, Lee B, Lee S, Ghim SY, et al. Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below ground micro-flora. J Ecol. 2011;99:46–56.
Article
CAS
Google Scholar
Zahid M, Abbasi MK, Hameed S, Rahim N. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol. 2015;6:207.
Article
PubMed
PubMed Central
Google Scholar
Zebelo S, Song Y, Kloepper JW, Fadamiro H. Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). Plant Cell Environ. 2016;39:935–43.
Article
CAS
PubMed
Google Scholar
Spaink H. Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol. 2000;54:257–88.
Article
CAS
PubMed
Google Scholar
Dobbelaere S, Vanderleyden J, Okon Y. Plant growth promoting effects of diazotrophsin the rhizosphere. Crit Rev Plant Sci. 2010;22:107–49.
Article
Google Scholar
Frost CJ, Mescher MC, Carlson JE, De Moraes CM. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 2008;146:818–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012;7:1306–20.
Article
PubMed
PubMed Central
Google Scholar
Maffei ME, Mithöfer A, Boland W. Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry. 2007;68:2946–59.
Article
CAS
PubMed
Google Scholar
Kessler A, Halitschke R, Baldwin IT. Silencing the Jasmonate Cascade: induced plant defenses and insect populations. Science. 2004;305:665–8.
Article
CAS
PubMed
Google Scholar
Pangesti N, Pineda A, Dicke M, Van Loon JJA. Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition. Plant Biol. 2015;17:474–83.
Article
CAS
PubMed
Google Scholar
Ahn IP, Lee SW, Suh SC. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol Plant-Microbe Interact. 2007;20:759–68.
Article
CAS
PubMed
Google Scholar
Valenzuela-Soto JH, Estrada-Hernández MG, Ibarra-Laclette E, DélanoFrier JP. Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta. 2010;231:397–410.
Article
CAS
PubMed
Google Scholar
Rashid MH, Chung YR. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front Plant Sci. 2017;8:1816.
Article
PubMed
PubMed Central
Google Scholar
Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci U S A. 2010;107:15011–150115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azzouz H, Cherqui A, Campan EDM, Rahbé Y, Duport G, Jouanin L, et al. Effects of plant protease inhibitors, oryzacystatin I and soybean BowmanBirk inhibitor, on the aphid Macrosiphum euphorbiae (Homoptera, Aphididae) and its parasitoid Aphelinus abdominalis (Hymenoptera, Aphelinidae). J Insect Physiol. 2005;51:75–86.
Article
CAS
PubMed
Google Scholar
Qiao JQ, Yu X, Liang XJ, Liu YF, Borriss R, Liu YZ. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 2017;17:131.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hanafi A, Traoré M, Schnitzler WH, Woitke M. Induced resistance of tomato to whiteflies and Phytium with the PGPR Bacillus subtilis in a soilless crop grown under greenhouse conditions. Acta Horticul. 2007;747:315–22.
Article
Google Scholar
Song YY, Ye M, Li CY, He X, Zhu-Salzman K, Wang RL, et al. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci Rep. 2014;4:3915.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gupta GP, Rani S, Birah A, Raghuraman M. Improved artificial diet for mass rearing of the tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae). Inter J Trop Insect Sci. 2005;25(1):55–8.
Article
Google Scholar
Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol. 2001;67(10):4742–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostenko O, Van de Voorde TFJ, Mulder PPJ, Van der Putten WH, Bezemer TM. Legacy effects of aboveground-belowground interactions. Ecol Lett. 2012;15(8):813–21.
Article
PubMed
Google Scholar
Yuan J, Zhao J, Wen T, Zhao ML, Li R, Goossens P, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome. 2018;6(1):156.
Article
PubMed
PubMed Central
Google Scholar
Gottel N, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol. 2011;77(17):5934–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Liu JY, Meng LY, Ma ZY, Tang XY, Cao YY, et al. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate. J Microbiol. 2012;50(2):191–8.
Article
CAS
PubMed
Google Scholar
Park M, Kim C, Yang J, Lee H, Shin W, Kim S, et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res. 2005;160:127–33.
Article
CAS
PubMed
Google Scholar
Long HH, Sonntag DG, Schmidt DD, Baldwin IT. The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol. 2010;185:554–67.
Article
CAS
PubMed
Google Scholar
Han Y, Li P, Gong S, Yang L, Wen L, Hou M. Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. Plos One. 2016;11(4):e0153918.
Article
PubMed
PubMed Central
CAS
Google Scholar
Neog M, Saikia L. Control of post-harvest pericarp browning of litchi (litchi chinensis Sonn). J Food Sci Technol. 2010;47:100–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng YQ, Zhang XY, Liu X, Qin NN, Xu KF, Zeng RS, et al. Nitrogen supply alters rice defense against the striped stem borer Chilo suppressalis. Front Plant Sci. 2021;12:691292.
Article
PubMed
PubMed Central
Google Scholar
Lareen A, Burton F, Schäfer P. Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol. 2016;90:575–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9:2738.
Article
PubMed
PubMed Central
CAS
Google Scholar
Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends in Plant Sci. 2012;17(8):478–86.
Article
CAS
Google Scholar
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607–21.
Article
CAS
PubMed
Google Scholar
Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36(11):1100–9.
Article
CAS
Google Scholar
Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, De Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.
Article
PubMed
CAS
Google Scholar
Shi Y, Pan Y, Xiang L, Zhu Z, Fu W, Hao G, et al. Assembly of rhizosphere microbial communities in Artemisia annua: recruitment of plant growth-promoting microorganisms and inter-kingdom interactions between bacteria and fungi. Plant Soil. 2022;470:127–39.
Article
CAS
Google Scholar
Messiha NAS, Van Diepeningen AD, Farag NS, Abdallah SA, Janse JD, Van Bruggen AHC. Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol. 2007;118:211–25.
Article
Google Scholar
Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G. Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils. 2012;48:947–60.
Article
Google Scholar
Berg G, Marten P, Ballin G. Stenotrophomonas maltophilia in the rhizosphere of oilseed rape - occurrence, characterization and interaction with phytopathogenic fungi. Microbiol Res. 1996;151:19–27.
Article
CAS
Google Scholar
Ryan R, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison M, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 2009;7:514–25.
Article
CAS
PubMed
Google Scholar
Hagemann M, Ribbeck-Busch K, Klähn S, Hasse D, Steinbruch R, Berg G. The plant-associated bacterium Stenotrophomonas rhizophila expresses a new enzyme for the synthesis of the compatible solute glucosylglycerol. J Bacteriol. 2008;190(17):5898–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, et al. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils. 2011;47:197–205.
Article
CAS
Google Scholar
Alavi P, Starcher M, Zachow C, Müller H, Berg G. Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci. 2013;4:141.
Article
PubMed
PubMed Central
Google Scholar
Pangesti N, Reichelt M, van de Mortel JE, Kapsomenou E, Gershenzon J, van Loon JJ, et al. Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J Chem Ecol. 2016;42:1212–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan Y, Yang W, Yan Q, Chen C, Li J. Genome-wide identification and expression analysis of the protease inhibitor gene families in tomato. Genes. 2020;11(1):1.
Article
CAS
Google Scholar
Casaretto JA, Corcuera LJ. Proteinase inhibitor accumulation in aphid-infested barley leaves. Phytochemistry. 1998;49:2279–86.
Article
CAS
Google Scholar
Saravanakumar D, Muthumeena K, Lavanya N, Suresh S, Rajendran L, Raguchander T, et al. Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Manag Sci. 2007;63:714–21.
Article
CAS
PubMed
Google Scholar