Geng Y, Dong X, Zhang C. Recent Progress of Sugar Transporters in Horticultural Crops. Acta Horticulturae Sinica. 2021;48(4):676–88.
Google Scholar
Hellmann H, Smeekens S. Sugar sensing and signaling in plants. Front Plant Sci. 2014;5:113.
PubMed
PubMed Central
Google Scholar
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot. 2014;65(3):799–807.
Article
CAS
PubMed
Google Scholar
Buttner M. The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol (Stuttg). 2010;12(Suppl 1):35–41.
Article
CAS
Google Scholar
Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012;17(7):413–22.
Article
CAS
PubMed
Google Scholar
Buttner M. The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett. 2007;581(12):2318–24.
Article
PubMed
CAS
Google Scholar
Kong W, An B, Zhang Y, Yang J, Li S, Sun T, Li Y. Sugar Transporter Proteins (STPs) in Gramineae Crops: Comparative Analysis, Phylogeny, Evolution, and Expression Profiling. Cells. 2019;8(6):560.
Article
CAS
PubMed Central
Google Scholar
Büttner M, Truernit E, Baier K, Scholz-Starke J, Sontheim M, Lauterbach C, Huss VAR, Sauer N. AtSTP3, a green leaf-specific, low affinity monosaccharide-H+ symporter of Arabidopsis thaliana. Plant, Cell Environ. 2000;23(2):175–84.
Article
Google Scholar
Sauer N, Friedländer K, Gräml-Wicke U. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J. 1990;9(10):3045–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Truernit E, Stadler R, Baier K, Sauer N. A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J. 1999;17(2):191–201.
Article
CAS
PubMed
Google Scholar
Truernit E, Schmid J, Epple P, Illig J, Sauer N. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell. 1996;8(12):2169–82.
CAS
PubMed
PubMed Central
Google Scholar
Scholz-Starke J, Büttner M, Sauer N. AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol. 2003;131(1):70–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneidereit A, Scholz-Starke J, Sauer N, Büttner M. AtSTP11, a pollen tube-specific monosaccharide transporter in Arabidopsis. Planta. 2005;221(1):48–55.
Article
CAS
PubMed
Google Scholar
Norholm MH, Nour-Eldin HH, Brodersen P, Mundy J, Halkier BA. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett. 2006;580(9):2381–7.
Article
CAS
PubMed
Google Scholar
Schneidereit A, Scholz-Starke J, Büttner M. Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis. Plant Physiol. 2003;133(1):182–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rottmann T, Klebl F, Schneider S, Kischka D, Rüscher D, Sauer N, Stadler R. Sugar transporter STP7 specificity for l-Arabinose and d-Xylose contrasts with the typical hexose transporters STP8 and STP12. Plant Physiol. 2018;176(3):2330–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Liu M, Tan L, Huai B, Ma X, Pan Q, Zheng P, Wen Y, Zhang Q, Zhao Q, et al. AtSTP8, an endoplasmic reticulum-localised monosaccharide transporter from Arabidopsis, is recruited to the extrahaustorial membrane during powdery mildew infection. New Phytol. 2021;230(6):2404–19.
Article
CAS
PubMed
Google Scholar
Rottmann T, Zierer W, Subert C, Sauer N, Stadler R. STP10 encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis. J Exp Bot. 2016;67(8):2387–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poschet G, Hannich B, Büttner M. Identification and characterization of AtSTP14, a novel galactose transporter from Arabidopsis. Plant Cell Physiol. 2010;51(9):1571–80.
Article
CAS
PubMed
Google Scholar
Otori K, Tanabe N, Tamoi M, Shigeoka S. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Biosci Biotechnol Biochem. 2019;83(3):472–81.
Article
CAS
PubMed
Google Scholar
Flütsch S, Nigro A, Conci F, Fajkus J, Thalmann M, Trtílek M, Panzarová K, Santelia D. Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. EMBO Rep. 2020;21(8): e49719.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rottmann T, Fritz C, Sauer N, Stadler R. Glucose uptake via STP transporters inhibits in vitro pollen tube growth in a HEXOKINASE1-dependent manner in Arabidopsis thaliana. Plant Cell. 2018;30(9):2057–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot P, La Camera S. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol Biol. 2014;85(4–5):473–84.
Article
CAS
PubMed
Google Scholar
Huai B, Yang Q, Wei X, Pan Q, Kang Z, Liu J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC Plant Biol. 2020;20: 49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huai B, Yang Q, Qian Y, Qian W, Kang Z, Liu J. ABA-Induced Sugar Transporter TaSTP6 Promotes Wheat Susceptibility to Stripe Rust. Plant Physiol. 2019;181(3):1328–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urwat U, Zargar SM, Ahmad SM, Ganai NA. Insights into role of STP13 in sugar driven signaling that leads to decrease in photosynthesis in dicot legume crop model (Phaseolus vulgaris L.) under Fe and Zn stress. Mol Biol Rep. 2021;48(3):2527–31.
Article
CAS
PubMed
Google Scholar
Deng X, An B, Zhong H, Yang J, Kong W, Li Y. A Novel Insight into Functional Divergence of the MST Gene Family in Rice Based on Comprehensive Expression Patterns. Genes. 2019;10(3):239.
Article
CAS
PubMed Central
Google Scholar
Cheng F, Liang J, Cai C, Cai X, Wu J, Wang X. Genome sequencing supports a multi-vertex model for Brassiceae species. Curr Opin Plant Biol. 2017;36:79–87.
Article
CAS
PubMed
Google Scholar
Wei H, Liu J, Zheng J, Zhou R, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, et al. Sugar transporter proteins in Capsicum: identification, characterization, evolution and expression patterns. Biotechnol Biotechnol Equip. 2020;34(1):341–53.
Article
CAS
Google Scholar
Wang J, Qiu Y, Wang X, Yue Z, Yang X, Chen X, Zhang X, Shen D, Wang H, Song J, et al. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis. Scientific Rep. 2017;7(1):16040.
Article
CAS
Google Scholar
Toyofuku K, Kasahara M, Yamaguchi J. Characterization and expression of monosaccharide transporters (osMSTs) in rice. Plant Cell Physiol. 2000;41(8):940–7.
Article
CAS
PubMed
Google Scholar
Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, Shibata D, Shiratake K. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant Cell Physiol. 2014;55(6):1123–41.
Article
CAS
PubMed
Google Scholar
Li JM, Zheng DM, Li LT, Qiao X, Wei SW, Bai B, Zhang SL, Wu J. Genome-Wide Function, Evolutionary Characterization and Expression Analysis of Sugar Transporter Family Genes in Pear (Pyrus bretschneideri Rehd). Plant Cell Physiol. 2015;56(9):1721–37.
Article
CAS
PubMed
Google Scholar
Zhang W, Wang S, Yu F, Tang J, Yu L, Wang H, Li J. Genome-Wide Identification and Expression Profiling of Sugar Transporter Protein (STP) Family Genes in Cabbage (Brassica oleracea var. capitata L.) Reveals their Involvement in Clubroot Disease Responses. Genes. 2019;10(1):71.
Article
PubMed Central
CAS
Google Scholar
Jiu S, Haider MS, Kurjogi MM, Zhang K, Zhu X, Fang J. Genome-wide Characterization and Expression Analysis of Sugar Transporter Family Genes in Woodland Strawberry. Plant Genome. 2018;11(3):170103.
Liu Q, Dang H, Chen Z, Wu J, Chen Y, Chen S, Luo L. Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta). Int J Mol Sci. 2018;19(4):987.
Article
PubMed Central
CAS
Google Scholar
Liu H, Li C, Qiao L, Hu L, Wang X, Wang J, Ruan X, Yang G, Yin G, Wang C, et al. The Sugar Transporter family in wheat (Triticum aestivum L.): genome-wide identification, classification, and expression profiling during stress in seedlings. PeerJ. 2021;9:e11371.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Liu T, Wang J, Wang P, Qiu Y, Zhao W, Pang S, Li X, Wang H, Song J, et al. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Mol Plant. 2021;14(12):2032–55.
Article
CAS
PubMed
Google Scholar
Parkin IA, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014;15(6):R77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, Liang J, Cai C, Liu Z, Liu B, et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Horticulture research. 2018;5:50–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paritosh K, Yadava SK, Singh P, Bhayana L, Mukhopadhyay A, Gupta V, Bisht NC, Zhang J, Kudrna DA, Copetti D, et al. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnol J. 2021;19(3):602–14.
Article
CAS
PubMed
Google Scholar
Song J-M, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants. 2020;6(1):34–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and Collinearity in Plant Genomes. Science (New York, NY). 2008;320(5875):486–8.
Article
CAS
Google Scholar
Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE. The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 2003;132(2):821–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamada K, Kanai M, Osakabe Y, Ohiraki H, Shinozaki K, Yamaguchi-Shinozaki K. Monosaccharide Absorption Activity of Arabidopsis Roots Depends on Expression Profiles of Transporter Genes under High Salinity Conditions. J Biol Chem. 2011;286(50):43577–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HG, Seo PJ. Transcriptional activation of SUGAR TRANSPORT PROTEIN 13 mediates biotic and abiotic stress signaling. Plant Signal Behav. 2021;16(8):1920759.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamada K, Saijo Y, Nakagami H, Takano Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science (New York, NY). 2016;354(6318):1427–30.
Article
CAS
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29-37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202-208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Xia R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X. Lee T-h, Jin H, Marler B, Guo H: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49–e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tkachenko AA, Gancheva MS, Tvorogova VE, Danilov LG, Predeus AV, Dodueva IE, Lutova LL. Transcriptome analysis of crown gall in radish (Raphanus sativus L.) inbred lines. Annals Applied Biol. 2021;178(3):527–48.
Article
CAS
Google Scholar
Xu L, Wang Y, Liu W, Wang J, Zhu X, Zhang K, Yu R, Wang R, Xie Y, Zhang W, et al. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). Plant Sci. 2015;236:313–23.
Article
CAS
PubMed
Google Scholar
Xie Y, Ye S, Wang Y, Xu L, Zhu X, Yang J, Feng H, Yu R, Karanja B, Gong Y, et al. Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing. Front Plant Sci. 2015;6:202.
PubMed
PubMed Central
Google Scholar
Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, Liu L. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. PLoS One. 2013;8(6):e66539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods (San Diego, Calif). 2001;25(4):402–8.
Article
CAS
Google Scholar
Liu T, Zhang Y, Zhang X, Sun Y, Wang H, Song J, Li X. Transcriptome analyses reveal key genes involved in skin color changes of 'Xinlimei' radish taproot. Plant Physiol Biochem. 2019;139:528–39.
Article
CAS
PubMed
Google Scholar