Chen JR, Ding BY, Funston M. Trapaceae. In Flora of China. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press; 2007. p. 290–1 13.
Group AP. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linnean Soc. 2003;141(4):399–436.
Article
Google Scholar
Hummel M, Kiviat E. Review of World literature on Water Chestnut with implications for management in North America. J Aquat Plant Manage. 2004;42:17–27.
Google Scholar
Akao S, Maeda K, Hosoi Y, Nagare H, Maeda M, Fujiwara T. Cascade utilization of water chestnut: recovery of phenolics, phosphorus, and sugars. Environ Sci Pollut Res. 2013;20:5373–8.
Article
CAS
Google Scholar
Ciou JY, Wang CCR, Chen J, Chiang PY. Total phenolics content and antioxidant activity of extracts from dried water caltrop (Trapa taiwanensis Nakai) hulls. J Food Drug Analysis. 2008;16:41e47.
Google Scholar
Yu H, Shen S. Phenolic composition, antioxidant, antimicrobial and antiproliferative activities of water caltrop pericarps extract. LWT-Food Sci Technol. 2015;61:238–43.
Article
CAS
Google Scholar
Li F, Mao YD, Wang YF, Raza A, Qiu LP, Xu XQ. Optimization of Ultrasonic-Assisted enzymatic extraction conditions for improving total phenolic content, antioxidant and antitumor activities in vitro from Trapa quadrispinosa Roxb. Residues. Molecules. 2017;22(3):396.
Article
CAS
Google Scholar
Kauser A, Muhammad S, Shah A, Iqbal N, Riaz M. In vitro antioxidant and cytotoxic potential of methanolic extracts of selected indigenous medicinal plants. Progr Nutr. 2018;20(4):706–12.
CAS
Google Scholar
Sweta, Bauddh K, Singh R, Singh RP. The suitability of Trapa natans for phytoremediation of inorganic contaminants from the aquatic ecosystems. Ecol Eng. 2015;83:39–42.
Article
Google Scholar
Xu L, Cheng S, Zhuang P, Xie D, Li S, Liu D, Li Z, Wang F, Xing F. Assessment of the nutrient removal potential of floating native and exotic aquatic macrophytes cultured in Swine Manure Wastewater. Int J Environ Res Public Health. 2020;17:1103.
Article
CAS
PubMed Central
Google Scholar
Gupta AK, Beentje HJ. Trapa natans, The IUCN Red List of Threatened Species. 2017. e.T164153A84299204.
Google Scholar
Campbell BT, Williams VE, Park W. Using molecular markers and field performance data to characterize the Pee Dee cotton germplasm resources. Euphytica. 2009;169(3):285–301.
Article
CAS
Google Scholar
Chorak GM, Dodd LL, Rybicki N, Ingram K, Buyukyoruk M, Kadono Y, Chen YY, Thum RA. Cryptic introduction of water chestnut (Trapa) in the northeastern United States. Aquat Bot. 2019;155:32–7.
Article
Google Scholar
Cook CDK. Aquatic plant book. Amsterdam/New York: SPB Academic Pub; 1996.
Google Scholar
Vassiljev V. Species novae Africanicae generis Trapa L. Nov Sist Vyss Rast. 1965;32:175–94.
Google Scholar
Vassiljev VN. Water Caltrops-Hydrocaryaceae Raimann. Flora of the USSR. Moscow: Publishing House of As of USSR; 1949. p. 637–62 15.
Google Scholar
Tutin TG. Flora Europaea. Cambridage: Cambridage University Press; 1968. p. 303–452.
Google Scholar
Yan SZ. Aquatic macrophytes of China. Beijing, China: Science Press; 1983.
Google Scholar
Kak AM. Aquatic and wetland vegetation of western Himalayas. J Econ Taxon Bot. 1988;12:447–51.
Google Scholar
Diao ZS. The morphogenesis in the ontogeny of the family Trapaceae. J Yuzhou Univ. 1990;3:1–11.
Google Scholar
Ding BY, Fang YY. Study on the pollen morphology of Trapa from Zhejiang. Acta phytotaxonomica sinica. 1991;29(3):172–7 (In Chinese with English abstract).
Google Scholar
Huang T, Ding BY, Hu RY, et al. Cytotaxonomic studies on the genus Trapa in China. In Research and Application of Life Sciences. Hangzhou: Zhejiang University Press; 1996. p. 235–9.
Google Scholar
Wang LJ, Ding BY. Study on the chromosomes of three Chinese Trapa species. Ningbo Agr Sci Technol. 1997;1:7–9.
Google Scholar
Fan XR, Li Z, Chu HJ, Li W, Liu YL, Chen YY. Analysis of morphological plasticity of Trapa L. from China and their taxonomic significance. Plant Sci J. 2016;34(3):340–51.
Google Scholar
Xiong Z, Sun X. Numerical taxonomic studies in Trapaceae in Hubei I. Plant Sci J. 1985;3:45–53 (In Chinese with English abstract).
Google Scholar
Xiong Z. Numerical taxonomic studies on Trapaceae from Hubei II. Plant Sci J. 1985;3:157–64 (In Chinese with English abstract).
Google Scholar
Xiong Z, Huang D, Wang H, Sun X. Numrical taxonomic studies in Trapa in Hubei III. Numerical evaluations of taxonomic characters. Plant Sci J. 1990;8(1):47–52 (In Chinese with English abstract).
Google Scholar
Takano A, Kadono Y. Allozyme variations and classification of Trapa (Trapaceae) in Japan. Aquat Bot. 2005;83(2):108–18.
Article
CAS
Google Scholar
Jiang WM, Ding BY. Genetic relationship among Trapa species assessed by RAPD markers. J Zhejiang Univ Agr Life Sci. 2004;30:191–6 (In Chinese with English Abstract).
Google Scholar
Fan XR, Wang WC, Chen L, Li W, Chen YY. Genetic relationship among 12 Trapa species/varietas from Yangtze River Basin revealed by AFLP markers. Aquat Bot. 2021;168: 103320.
Article
Google Scholar
Li XL, Fan XR, Chu HJ, Li W, Chen YY. Genetic delimitation and population structure of three Trapa taxa from the Yangtze River. China Aquat Bot. 2017;136:61–70.
Article
Google Scholar
Xue JH, Xue ZQ, Wang RX, Rubtsova TA, Pshennikova LM, Guo Y. Didtribution pattren and morphological diversity of Trapa L. in the Heilong and Tumen River Basin. J Plant Sci. 2016;34:506–20.
Xue ZQ, Xue JH, Victorovna KM, Ma KP. The complete chloroplast DNA sequence of Trapa maximowiczii Korsh. (Trapaceae), and comparative analysis with other Myrtales species. Aquat Bot. 2017;143:54–62.
Article
CAS
Google Scholar
Sun F, Yin Y, Xue B, Zhou R, Xu J. The complete chloroplast genome sequence of Trapa bicornis Osbeck (Lythraceae). Mitochondrial DNA Part B. 2020;5(3):2746–7.
Article
PubMed
PubMed Central
Google Scholar
Howe CJ, Barbrook AC, Koumandou VL, Nisbet R, Symington HA, Wightman TF. Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol. 2003;358(1429):99–107.
Article
CAS
Google Scholar
Ruhlman TA, Jansen RK. The plastid genomes of flowering plants. Methods Mol Biol. 2014;1132:3–38.
Article
CAS
PubMed
Google Scholar
Cauz-Santos LA, Munhoz CF, Rodde N, Cauet S, Santos AA, Penha HA, Dornelas MC, Varani AM, Oliveira GCX, Bergès H, et al. The chloroplast genome of Passiflora edulis (Passifloraceae) assembled from long sequence reads: structural organization and phylogenomic studies in malpighiales. Front Plant Sci. 2017;8:334.
Article
PubMed
PubMed Central
Google Scholar
Hong Z, Wu Z, Zhao K, Yang Z, Zhang N, Guo J, Tembrock LR, Xu D. Comparative analyses of five complete chloroplast genomes from the genus Pterocarpus (Fabacaeae). Int J Mol Sci. 2020;21(11):3758.
Article
CAS
PubMed Central
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England). 2018;34(17):i884–90.
Article
CAS
Google Scholar
Eguiluz M, Rodrigues NF, Guzman F, Yuyama P, Margis R. The chloroplast genome sequence from Eugenia uniflora, a Myrtaceae from Neotropics. Plant Syst Evol. 2017;303:1199–212.
Article
CAS
Google Scholar
Yang Z, Zhao T, Ma Q, Liang L, Wang G. Comparative genomics and phylogenetic analysis revealed the chloroplast genome variation and interspecific relationships of Corylus (Betulaceae) Species. Front Plant Sci. 2018;9:927.
Article
PubMed
PubMed Central
Google Scholar
Xu C, Dong W, Li W, Lu Y, Xie X, Jin X, Shi J, He K, Suo Z. Comparative analysis of six Lagerstroemia complete chloroplast. Front Plant Sci. 2017;8:15.
PubMed
PubMed Central
Google Scholar
Zheng G, Wei L, Ma L, Wu Z, Chen K. Comparative analyses of chloroplast genomes from 13 Lagerstroemia (Lythraceae) species: identification of highly divergent regions and inference of phylogenetic relationships. Plant Mol Biol. 2020;102:659–76.
Article
CAS
PubMed
Google Scholar
Peng J, Zhao Y, Dong M, Liu S, Xu Z. Exploring the evolutionary characteristics between cultivated tea and its wild relatives using complete chloroplast genomes. BMC Ecol Evo. 2020;21:71.
Article
CAS
Google Scholar
Hishamuddin MS, Lee SY, Ng WL, Ramlee SI, Lamasudin DU, Mohamed R. Comparison of eight complete chloroplast genomes of the endangered Aquilaria tree species (Thymelaeaceae) and their phylogenetic relationships. Sci Rep. 2020;10(1):13034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu C, Tembrock LR, Johnson NG, Simmons MP, Wu Z. The complete plastid genome of lagerstroemia fauriei and loss of rpl2 intron from Lagerstroemia (Lythraceae). PLoS ONE. 2016;11(3):e0150752.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gu C, Ma L, Wu Z, Chen K, Wang Y. Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales. BMC Plant Biol. 2019;19(1):281.
Article
PubMed
PubMed Central
CAS
Google Scholar
Terakami S, Matsumura Y, Kurita K, Kanamori H, Katayose Y, Yamamoto T, Katayama H. Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis. Tree Genet Genomes. 2012;8(4):841–54.
Article
Google Scholar
Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL, Jansen RK. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol. 2006;6(1):77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang CY, Liu T, Mo XL, Huang HR, Yan HF. Comparative analyses of the chloroplast genomes of patchouli plants and their relatives in Pogostemon (Lamiaceae). Plants. 2020;9(11):1497.
Article
CAS
PubMed Central
Google Scholar
Nguyen P, Kim JS, Kim JH. The complete chloroplast genome of colchicine plants (Colchicum autumnale and Gloriosa superba ) and its application for identifying the genus. Planta. 2015;242(1):223–37.
Article
CAS
PubMed
Google Scholar
Lu RS, Li P, Qiu YX. The complete chloroplast genomes of three Cardiocrinum (Liliaceae) species: comparative genomic and phylogenetic analyses. Front Plant Sci. 2017;7:2054.
Article
PubMed
PubMed Central
Google Scholar
Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Mol Phylogenet Evol. 2014;72:82–9.
Article
CAS
PubMed
Google Scholar
Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics. 2007;8(1):174.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nazareno AG, Carlsen M, Lohmann LG. Complete chloroplast genome of Tanaecium tetragonolobum: the first Bignoniaceae plastome. PLoS ONE. 2015;10(6): e0129930.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang J, Lucía V, Chen X, Li H, Hao Z, Liu Z, Zhao G. Development of chloroplast and nuclear DNA markers for Chinese Oaks (Quercus subgenus Quercus) and assessment of their utility as DNA barcodes. Front Plant Sci. 2017;8:816.
Article
PubMed
PubMed Central
Google Scholar
Yan X, Liu T, Yuan X, Xu Y, Yan H, Hao G. Chloroplast genomes and comparative analyses among thirteen taxa within Myrsinaceae s.str. clade (Myrsinoideae, Primulaceae). Int J Mol Sci. 2019;20(18):4534.
Article
CAS
PubMed Central
Google Scholar
Asaf S, Khan AL, Khan AR, Waqas M, Kang SM, Khan MA, Lee SM, Lee IJ. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front Plant Sci. 2016;7:843.
Article
PubMed
PubMed Central
Google Scholar
Kuang DY, Wu H, Wang YL, Gao LM, Lu L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome. 2011;54(8):663–73.
Article
PubMed
Google Scholar
Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA res. 2004;11(4):247–61.
Article
CAS
PubMed
Google Scholar
Lin CP, Wu CS, Huang YY, Chaw SM. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol Evol. 2012;4(3):374–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wagutu GK, Fan X, Wang W, Li W, Chen Y. The complete chloroplast genome sequence of Trapa kozhevnikoviorum Pshenn. (Lythraceae). Mitochondrial DNA Part B. 2021;6(6):1677–9.
Article
PubMed
PubMed Central
Google Scholar
Wang W, Fan X, Li X, Chen Y. The complete chloroplast genome sequence of Trapa incisa Sieb. & Zucc. (Lythraceae). Mitochondrial DNA Part B. 2021;6(6):1732–3.
Article
PubMed
PubMed Central
Google Scholar
Wan WH. Trapaceae. Flora Republicae Popularis Sinicae. Beijing: Science Press; 2000. p. 1–26 53.
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
Google Scholar
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21(1):241.
Article
PubMed
PubMed Central
Google Scholar
Qu XJ, Moore MJ, Li DZ, Yi TS. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 2019;15(1):50.
Article
PubMed
PubMed Central
Google Scholar
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45(W1):W6-w11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:686–9.
Article
CAS
Google Scholar
Lohse M, Drechsel O, Bock R. Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007;52(5–6):267–74.
Article
CAS
PubMed
Google Scholar
Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucl Acids Res. 1987;15(3):1281–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucl Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Glen S, Li M, Christina K, Koichiro T. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2.
Article
CAS
PubMed
Google Scholar
Kurtz S, Schleiermacher C. REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics. 1999;5:426–7.
Article
Google Scholar
Thiel T, Michalek W, Varshney R, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106(3):411–22.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Article
CAS
PubMed
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772–772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Article
PubMed
PubMed Central
Google Scholar