Waycott M, Biffin E, Les DH. Systematics and evolution of Australian seagrasses in a global context. In: Larkum AWD, Kendrick GA, Ralph PJ, editors. Seagrasses of Australia. Cham: Springer International Publishing; 2018. p. 129–54. https://doi.org/10.1007/978-3-319-71354-0_5.
Chapter
Google Scholar
Les DH, Cleland MA, Waycott M. Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot. 1997;22:443. https://doi.org/10.2307/2419820.
Article
Google Scholar
Wissler L, Codoñer FM, Gu J, Reusch TB, Olsen JL, Procaccini G, et al. Back to the sea twice: Identifying candidate plant genes for molecular evolution to marine life. BMC Evol Biol. 2011;11:8. https://doi.org/10.1186/1471-2148-11-8.
Article
PubMed
PubMed Central
Google Scholar
Les DH, Tippery NP. In time and with water. The systematics of Alismatid monocotyledons. In: Wilkin P, Mayo SJ, editors. Early events in monocot evolution. Cambridge: Cambridge University Press; 2013. p. 118–64. https://doi.org/10.1017/CBO9781139002950.007.
Chapter
Google Scholar
The Angiosperm Phylogeny Group. An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181:1–20. https://doi.org/10.1111/boj.12385.
Article
Google Scholar
Strazisar T, Koch MS, Madden CJ. Seagrass (Ruppia maritima L) Life history transitions in response to salinity dynamics along the Everglades-Florida bay Ecotone. Estuaries Coasts. 2015;38:337–52. https://doi.org/10.1007/s12237-014-9807-4.
Article
CAS
Google Scholar
Tyerman S, Hatcher A, West R, Larkum A. Posidonia australis growing in altered salinities: Leaf growth, regulation of turgor and the development of osmotic gradients. Funct Plant Biol. 1984;11:35. https://doi.org/10.1071/PP9840035.
Article
Google Scholar
Nejrup LB, Pedersen MF. Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquat Bot. 2008;88:239–46. https://doi.org/10.1016/j.aquabot.2007.10.006.
Article
Google Scholar
Hemminga MA, Duarte CM. Seagrasses in the human environment. In: Seagrass ecology. Cambridge University Press; 2000. p. 248–91. https://doi.org/10.1017/CBO9780511525551.008
Valentine JF, Duffy JE. The central role of grazing in seagrass ecology. In: Larkum AWD, Orth RJ, Duarte CM, editors. Seagrasses: Biology, ecology and conservation. Dordrecht: Springer, Netherlands; 2006. p. 463–501. https://doi.org/10.1007/978-1-4020-2983-7_20.
Chapter
Google Scholar
Duffy JE, Benedetti-Cecchi L, Trinanes J, Muller-Karger FE, Ambo-Rappe R, Boström C, et al. Toward a coordinated global observing system for seagrasses and marine macroalgae. Front Mar Sci. 2019;6:317. https://doi.org/10.3389/fmars.2019.00317.
Article
Google Scholar
Pilavtepe M, Celiktas MS, Sargin S, Yesil-Celiktas O. Transformation of Posidonia oceanica residues to bioethanol. Ind Crops Prod. 2013;51:348–54. https://doi.org/10.1016/j.indcrop.2013.09.020.
Article
CAS
Google Scholar
Lee H, Golicz AA, Bayer PE, Jiao Y, Tang H, Paterson AH, et al. The Genome of a southern hemisphere seagrass species (Zostera muelleri). Plant Physiol. 2016;172:272–83. https://doi.org/10.1104/pp.16.00868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsen JL, Rouzé P, Verhelst B, Lin Y-C, Bayer T, Collen J, et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature. 2016;530:331–5. https://doi.org/10.1038/nature16548.
Article
CAS
PubMed
Google Scholar
Pfeifer L, Classen B. The cell wall of seagrasses: Fascinating, peculiar and a blank canvas for future research. Front Plant Sci. 2020;11: 588754. https://doi.org/10.3389/fpls.2020.588754.
Article
PubMed
PubMed Central
Google Scholar
Syed NFN, Zakaria MH, Bujang JS. Fiber Characteristics and papermaking of seagrass using hand-beaten and blended pulp. BioResources. 2016;11:5358–80. https://doi.org/10.15376/biores.11.2.5358-5380.
Article
CAS
Google Scholar
Davies P, Morvan C, Sire O, Baley C. Structure and properties of fibres from seagrass (Zostera marina). J Mater Sci. 2007;42:4850–7. https://doi.org/10.1007/s10853-006-0546-1.
Article
CAS
Google Scholar
Aquino RS, Landeira-Fernandez AM, Valente AP, Andrade LR, Mourão PAS. Occurrence of sulfated galactans in marine angiosperms: Evolutionary implications. Glycobiology. 2005;15:11–20. https://doi.org/10.1093/glycob/cwh138.
Article
CAS
PubMed
Google Scholar
Silva JMC, Dantas-Santos N, Gomes DL, Costa LS, Cordeiro SL, Costa MSSP, et al. Biological Activities of the sulfated polysaccharide from the vascular plant Halodule wrightii. Rev Bras Farmacogn. 2012;22:94–101. https://doi.org/10.1590/S0102-695X2011005000199.
Article
CAS
Google Scholar
Kolsi RBA, Fakhfakh J, Krichen F, Jribi I, Chiarore A, Patti FP, et al. Structural characterization and functional properties of antihypertensive Cymodocea nodosa sulfated polysaccharide. Carbohydr Polym. 2016;151:511–22. https://doi.org/10.1016/j.carbpol.2016.05.098.
Article
CAS
PubMed
Google Scholar
Lv Y, Shan X, Zhao X, Cai C, Zhao X, Lang Y, et al. Extraction, isolation, structural characterization and anti-tumor properties of an apigalacturonan-rich polysaccharide from the seagrass Zostera caespitosa miki. Mar Drugs. 2015;13:3710–31. https://doi.org/10.3390/md13063710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46. https://doi.org/10.1146/annurev.arplant.54.031902.134938.
Article
CAS
PubMed
Google Scholar
Ralph J, Lapierre C, Boerjan W. Lignin structure and its engineering. Food Biotechnol Plant Biotechnol. 2019;56:240–9. https://doi.org/10.1016/j.copbio.2019.02.019.
Article
CAS
Google Scholar
Weng J-K, Chapple C. The origin and evolution of lignin biosynthesis: Tansley review. New Phytol. 2010;187:273–85. https://doi.org/10.1111/j.1469-8137.2010.03327.x.
Article
CAS
PubMed
Google Scholar
Kuo J. Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia könig (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis hook F. Aquat Bot. 1978;5:171–90. https://doi.org/10.1016/0304-3770(78)90060-8.
Article
Google Scholar
Kuo J. The nacreous walls of sieve elements in seagrasses. Am J Bot. 1983;70:159. https://doi.org/10.1002/j.1537-2197.1983.tb07854.x.
Article
Google Scholar
Kuo J, Cambridge ML, Kirkman H. Anatomy and structure of australian seagrasses. In: Larkum AWD, Kendrick GA, Ralph PJ, editors. Seagrasses of Australia. Cham: Springer International Publishing; 2018. p. 93–125. https://doi.org/10.1007/978-3-319-71354-0_4.
Chapter
Google Scholar
Cambridge ML, Kuo J. Morphology, Anatomy and histochemistry of the Australian seagrasses of the genus Posidonia König (Posidoniaceae) III. Posidonia sinuosa Cambridge & Kuo. Aquat Bot. 1982;14:1–14. https://doi.org/10.1016/0304-3770(82)90082-1.
Article
Google Scholar
Klap V, Hemminga M, Boon J. Retention of lignin in seagrasses: Angiosperms that returned to the sea. Mar Ecol Prog Ser. 2000;194:1–11. https://doi.org/10.3354/meps194001.
Article
CAS
Google Scholar
Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem. 2010;58:9043–53. https://doi.org/10.1021/jf1008023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opsahl S, Benner R. Decomposition of senescent blades of the seagrass Halodule wrightii in a subtropical lagoon. Mar Ecol Prog Ser. 1993;94:191–205. https://doi.org/10.3354/MEPS094191.
Article
Google Scholar
Ncibi MC, Jeanne-Rose V, Mahjoub B, Jean-Marius C, Lambert J, Ehrhardt JJ, et al. Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L) fibres. J Hazard Mater. 2009;165:240–9. https://doi.org/10.1016/j.jhazmat.2008.09.126.
Article
CAS
PubMed
Google Scholar
Kaal J, Serrano O, Nierop KGJ, Schellekens J, Martínez Cortizas A, Mateo M-Á. Molecular Composition of plant parts and sediment organic matter in a Mediterranean seagrass (Posidonia oceanica) Mat. Aquat Bot. 2016;133:50–61. https://doi.org/10.1016/j.aquabot.2016.05.009.
Article
CAS
Google Scholar
van Erven G, de Visser R, Merkx DWH, Strolenberg W, de Gijsel P, Gruppen H, et al. Quantification of lignin and its structural features in plant biomass using 13C lignin as internal standard for pyrolysis-GC-SIM-MS. Anal Chem. 2017;89:10907–16. https://doi.org/10.1021/acs.analchem.7b02632.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Erven G, de Visser R, de Waard P, van Berkel WJH, Kabel MA. Uniformly 13C Labeled lignin internal standards for quantitative pyrolysis−GC−MS analysis of grass and wood. ACS Sustain Chem Eng. 2019;7:20070–6. https://doi.org/10.1021/acssuschemeng.9b05926.
Article
CAS
Google Scholar
Kaal J, Serrano O, del Río JC, Rencoret J. Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Org Geochem. 2018;124:247–56. https://doi.org/10.1016/j.orggeochem.2018.07.017.
Article
CAS
Google Scholar
Rencoret J, Marques G, Serrano O, Kaal J, Martínez AT, del Río JC, et al. Deciphering the unique structure and acylation pattern of Posidonia oceanica lignin. ACS Sustain Chem Eng. 2020;8:12521–33. https://doi.org/10.1021/acssuschemeng.0c03502.
Article
CAS
Google Scholar
Raimundo SC, Avci U, Hopper C, Pattathil S, Hahn MG, Popper ZA. Immunolocalization of cell wall carbohydrate epitopes in seaweeds: Presence of land plant epitopes in Fucus vesiculosus l. (Phaeophyceae). Planta. 2016;243:337–54. https://doi.org/10.1007/s00425-015-2412-3.
Article
CAS
PubMed
Google Scholar
O’Rourke C, Gregson T, Murray L, Sandler IH, Fry SC. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: Presence of 3-O-methyl-d-galactose residues. Ann Bot. 2015;116:225–36. https://doi.org/10.1093/aob/mcv089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitra PP, Loqué D. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J Vis Exp. 2014. https://doi.org/10.3791/51381.
Article
Google Scholar
Iiyama K, Pant R. The mechanism of the Mäule colour reaction: Introduction of methylated syringyl nuclei into softwood lignin. Wood Sci Technol. 1988;22:167–75. https://doi.org/10.1007/BF00355852.
Article
CAS
Google Scholar
Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, et al. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D: Are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell. 2005;17:2059–76. https://doi.org/10.1105/tpc.105.030767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vazquez-Cooz I, Meyer RW. A differential staining method to identify lignified and unlignified tissues. Biotech Histochem. 2009;77:277–82. https://doi.org/10.1080/bih.77.5-6.277.282.
Article
Google Scholar
Ralph J, Hatfield RD. Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem. 1991;39:1426–37. https://doi.org/10.1021/jf00008a014.
Article
CAS
Google Scholar
Del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A. Structural Characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem. 2012;60:5922–35. https://doi.org/10.1021/jf301002n.
Article
CAS
PubMed
Google Scholar
van Erven G, Hilgers R, de Waard P, Gladbeek E-J, van Berkel WJH, Kabel MA. Elucidation of In Situ ligninolysis mechanisms of the selective white-rot fungus Ceriporiopsis subvermispora. ACS Sustain Chem Eng. 2019;7:16757–64. https://doi.org/10.1021/acssuschemeng.9b04235.
Article
CAS
Google Scholar
Pettitt JM. Reproduction in seagrasses: Nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann Bot. 1980;45:257–71. https://doi.org/10.1093/oxfordjournals.aob.a085822.
Article
CAS
Google Scholar
Pfeifer L, Shafee T, Johnson KL, Bacic A, Classen B. Arabinogalactan-proteins of Zostera marina L contain unique glycan structures and provide insight into adaption processes to saline environments. Sci Rep. 2020;10:8232. https://doi.org/10.1038/s41598-020-65135-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11:266–77. https://doi.org/10.1016/j.pbi.2008.03.006.
Article
CAS
PubMed
Google Scholar
Atmodjo MA, Hao Z, Mohnen D. Evolving views of pectin biosynthesis. Annu Rev Plant Biol. 2013;64:747–79. https://doi.org/10.1146/annurev-arplant-042811-105534.
Article
CAS
PubMed
Google Scholar
Ovodov YUS, Ovodova RG, Bondarenko OD, Krasikova IN. The pectic substances of Zosteraceae: Part IV. Pectinase digestion of Zosterine. Carbohydr Res. 1971;18:311–8. https://doi.org/10.1016/S0008-6215%2800%2980355-9.
Article
CAS
Google Scholar
Gloaguen V, Brudieux V, Closs B, Barbat A, Krausz P, Sainte-Catherine O, et al. Structural characterization and cytotoxic properties of an apiose-rich pectic polysaccharide obtained from the cell wall of the marine phanerogam Zostera marina. J Nat Prod. 2010;73:1087–92. https://doi.org/10.1021/np100092c.
Article
CAS
PubMed
Google Scholar
Avci U, Peña MJ, O’Neill MA. Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. Planta. 2018;247:953–71. https://doi.org/10.1007/s00425-017-2837-y.
Article
CAS
PubMed
Google Scholar
Sowinski EE, Gilbert S, Lam E, Carpita NC. Linkage structure of cell-wall polysaccharides from three duckweed species. Carbohydr Polym. 2019;223: 115119. https://doi.org/10.1016/j.carbpol.2019.115119.
Article
CAS
PubMed
Google Scholar
Miroshnikov V. Zostera as an industrial raw material. Zh Prikl Khim. 1940;13:1477–89.
CAS
Google Scholar
Ovodov YUS, Mikheyskaya LV, Ovodova RG, Krasikova IN. The pectic substances of Zosteraceae: Part V. Smith degradation of Zosterine Carbohydr Res. 1971;18:319–22. https://doi.org/10.1016/s0008-6215(00)80356-0.
Article
CAS
Google Scholar
Bell D, Isherwood F, Hardwick NE. d(+)-apiose from the monocotyledon Posidonia australis. J Chem Soc Resumed. 1954;:3702–6. https://doi.org/10.1039/JR9540003702
Webster J, Stone BA. Isolation, structure and monosaccharide composition of the walls of vegetative parts of Heterozostera tasmanica (martens ex aschers.) den Hartog. Aquat Bot. 1994;47:39–52. https://doi.org/10.1016/0304-3770(94)90046-9.
Article
CAS
Google Scholar
Voragen AGJ, Coenen G-J, Verhoef RP, Schols HA. Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem. 2009;20:263–75. https://doi.org/10.1007/s11224-009-9442-z.
Article
CAS
Google Scholar
Matoh T, Kawaguchi S, Kobayashi M. Ubiquity of a borate-rhamnogalacturonan II complex in the cell walls of higher plants. Plant Cell Physiol. 1996;37:636–40. https://doi.org/10.1093/oxfordjournals.pcp.a028992.
Article
CAS
Google Scholar
Wefers D, Bunzel M. NMR Spectroscopic profiling of arabinan and galactan structural elements. J Agric Food Chem. 2016;64:9559–68. https://doi.org/10.1021/acs.jafc.6b04232.
Article
CAS
PubMed
Google Scholar
Ackerman JD. Sexual reproduction of seagrasses: Pollination in the marine context. In: Larkum A, Orth RJ, Duarte CM, editors. Seagrasses: Biology, ecology and conservation. Dordrecht: Springer, Netherlands; 2006. p. 89–109. https://doi.org/10.1007/978-1-4020-2983-7_4.
Chapter
Google Scholar
Peña MJ, Kulkarni AR, Backe J, Boyd M, O’Neill MA, York WS. Structural diversity of xylans in the cell walls of monocots. Planta. 2016;244:589–606. https://doi.org/10.1007/s00425-016-2527-1.
Article
CAS
PubMed
Google Scholar
Hatfield RD, Rancour DM, Marita JM. Grass Cell Walls: A story of cross-linking. Front Plant Sci. 2017;7:2056. https://doi.org/10.3389/fpls.2016.02056.
Article
PubMed
PubMed Central
Google Scholar
Tryfona T, Sorieul M, Feijao C, Stott K, Rubtsov DV, Anders N, et al. Development of an oligosaccharide library to characterise the structural variation in glucuronoarabinoxylan in the cell walls of vegetative tissues in grasses. Biotechnol Biofuels. 2019;12:109. https://doi.org/10.1186/s13068-019-1451-6.
Article
PubMed
PubMed Central
Google Scholar
Baydoun EAH, Brett CT. Comparison of cell wall compositions of the rhizomes of three seagrasses. Aquat Bot. 1985;23:191–6. https://doi.org/10.1016/0304-3770(89)90106-X.
Article
CAS
Google Scholar
Brennan M, Harris PJ. Distribution of fucosylated xyloglucans among the walls of different cell types in monocotyledons determined by immunofluorescence microscopy. Mol Plant. 2011;4:144–56. https://doi.org/10.1093/mp/ssq067.
Article
CAS
PubMed
Google Scholar
Touchette BW, Burkholder JM. Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Biol Ecol. 2000;250:169–205. https://doi.org/10.1016/S0022-0981(00)00196-9.
Article
CAS
PubMed
Google Scholar
Peralta G, Pérez-Lloréns JL, Hernández I, Vergara JJ. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii hornem. J Exp Mar Biol Ecol. 2002;269:9–26. https://doi.org/10.1016/S0022-0981(01)00393-8.
Article
Google Scholar
Heglmeier A, Zidorn C. Secondary metabolites of Posidonia oceanica (Posidoniaceae). Biochem Syst Ecol. 2010;38:964–70. https://doi.org/10.1016/j.bse.2010.07.001.
Article
CAS
Google Scholar
Liu Q, Luo L, Zheng L. Lignins: Biosynthesis and biological functions in plants. Int J Mol Sci. 2018;19:335. https://doi.org/10.3390/ijms19020335.
Article
CAS
PubMed Central
Google Scholar
Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol. 2010;52:360–76. https://doi.org/10.1111/j.1744-7909.2010.00892.x.
Article
CAS
PubMed
Google Scholar
Hyde KD, Jones EBG, Leaño E, Pointing SB, Poonyth AD, Vrijmoed LLP. Role of fungi in marine ecosystems. Biodivers Conserv. 1998;7:1147–61. https://doi.org/10.1023/A:1008823515157.
Article
Google Scholar
Vanholme R, Morreel K, Ralph J, Boerjan W. Lignin engineering. Curr Opin Plant Biol. 2008;11:278–85. https://doi.org/10.1016/j.pbi.2008.03.005.
Article
CAS
PubMed
Google Scholar
Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydr Polym. 2017;175:395–408. https://doi.org/10.1016/j.carbpol.2017.07.082.
Article
CAS
PubMed
Google Scholar
Ciancia M, Fernández PV, Leliaert F. Diversity of sulfated polysaccharides from cell walls of coenocytic green algae and their structural relationships in view of green algal evolution. Front Plant Sci. 2020;11: 554585. https://doi.org/10.3389/fpls.2020.554585.
Article
PubMed
PubMed Central
Google Scholar
Sabry DA, Cordeiro SL, Ferreira Silva CH, Cunha Farias EH, Sassaki GL, Nader HB, et al. Pharmacological prospection and structural characterization of two purified sulfated and pyruvylated homogalactans from green algae Codium isthmocladum. Carbohydr Polym. 2019;222: 115010. https://doi.org/10.1016/j.carbpol.2019.115010.
Article
CAS
PubMed
Google Scholar
Aquino RS, Grativol C, Mourão PAS. Rising from the sea: Correlations between sulfated polysaccharides and salinity in plants. PLoS ONE. 2011;6: e18862. https://doi.org/10.1371/journal.pone.0018862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamport DTA, Kieliszewski MJ, Showalter AM. Salt stress upregulates periplasmic arabinogalactan proteins: Using salt stress to analyse AGP function. New Phytol. 2006;169:479–92. https://doi.org/10.1111/j.1469-8137.2005.01591.x.
Article
CAS
PubMed
Google Scholar
Lahaye PA, Epstein E. Salt toleration by plants: Enhancement with calcium. Science. 1969;166:395–6. https://doi.org/10.1126/science.166.3903.395.
Article
CAS
PubMed
Google Scholar
Lv X, Yu P, Deng W, Li Y. Transcriptomic analysis reveals the molecular adaptation to NaCl stress in Zostera marina L. Plant Physiol Biochem. 2018;130:61–8. https://doi.org/10.1016/j.plaphy.2018.06.022.
Article
CAS
PubMed
Google Scholar
Moore JP, Nguema-Ona EE, Vicré-Gibouin M, Sørensen I, Willats WGT, Driouich A, et al. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta. 2013;237:739–54. https://doi.org/10.1007/s00425-012-1785-9.
Article
CAS
PubMed
Google Scholar
Corrêa-Ferreira ML, Viudes EB, de Magalhães PM, de Santana FilhoPaixão A, Sassaki GL, Pacheco AC, et al. Changes in the composition and structure of cell wall polysaccharides from Artemisia annua in response to salt stress. Carbohydr Res. 2019;483:107753. https://doi.org/10.1016/j.carres.2019.107753.
Article
CAS
PubMed
Google Scholar
Zhao C, Zayed O, Zeng F, Liu C, Zhang L, Zhu P, et al. Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytol. 2019;224:274–90. https://doi.org/10.1111/nph.15867.
Article
CAS
PubMed
Google Scholar
Khotimchenko Y, Khozhaenko E, Kovalev V, Khotimchenko M. Cerium binding activity of pectins isolated from the seagrasses Zostera marina and Phyllospadix iwatensis. Mar Drugs. 2012;10:834–48. https://doi.org/10.3390/md10040834.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larkum AWD, Waycott M, Conran JG. Evolution and biogeography of seagrasses. In: Larkum AWD, Kendrick GA, Ralph PJ, editors. Seagrasses of Australia. Cham: Springer International Publishing; 2018. p. 3–29. https://doi.org/10.1007/978-3-319-71354-0_1.
Chapter
Google Scholar
den Hartog CKJ. The sea-grasses of the world. Amsterdam: North-Holland Publishing Company; 1970.
Google Scholar
Aires T, Marbà N, Cunha RL, Kendrick GA, Walker DI, Serrão EA, et al. Evolutionary history of the seagrass genus Posidonia. Mar Ecol Prog Ser. 2011;421:117–30. https://doi.org/10.3354/meps08879.
Article
Google Scholar
Coyer JA, Hoarau G, Kuo J, Tronholm A, Veldsink J, Olsen JL. Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci. Syst Biodivers. 2013;11:271–84. https://doi.org/10.1080/14772000.2013.821187 .
Article
Google Scholar
Pagliuso D, Grandis A, Lam E, Buckeridge MS. High saccharification, low lignin, and high sustainability potential make duckweeds adequate as bioenergy feedstocks. BioEnergy Res. 2020. https://doi.org/10.1007/s12155-020-10211-x.
Article
Google Scholar
Pfeifer L, Utermöhlen J, Happ K, Permann C, Holzinger A, von Schwartzenberg K, Classen B. Search for evolutionary roots of land plant arabinogalactan-proteins in charophytes: Presence of a rhamnogalactan-protein in Spirogyra pratensis (Zygnematophyceae). Plant J. 2021. https://doi.org/10.1111/tpj.15577.
Article
PubMed
PubMed Central
Google Scholar
Blakeney AB, Harris PJ, Henry RJ, Stone BA. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res. 1983;113:291–9. https://doi.org/10.1016/0008-6215(83)88244-5.
Article
CAS
Google Scholar
Tang Y, Horikoshi M, Li W. ggfortify: Unified interface to visualize statistical results of popular R packages. R J. 2016;8:474–85. https://doi.org/10.32614/RJ-2016-060.
Article
Google Scholar
Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54:484–9. https://doi.org/10.1016/0003-2697(73)90377-1.
Article
CAS
PubMed
Google Scholar
Gerlach D. Botanische Mikrotechnik: Eine Einführung. 2nd edition, revised. Stuttgart: Thieme; 1977.