Raghothama K. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:665–93 https://doi.org/10.1146/annurev.arplant.50.1.665.
Article
CAS
PubMed
Google Scholar
Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 1998;116(2):447–53 https://doi.org/10.1104/pp.116.2.447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma J, He P, Xu X, He W, Liu Y, Yang F, et al. Temporal and spatial changes in soil available phosphorus in China (1990–2012). Field Crop Res. 2016;192:13–20 https://doi.org/10.1016/j.fcr.2016.04.006.
Article
Google Scholar
Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crop Res. 2010;117(2–3):169–76 https://doi.org/10.1016/j.fcr.2010.03.001.
Article
Google Scholar
López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol. 2014(65):23.1–29. https://doi.org/10.1146/annurev-arplant-050213-035949.
Lynch J. Root architecture and plant productivity. Plant Physiol. 1995;109(1):7–13 https://doi.org/10.1104/pp.109.1.7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu D, Zhen F, Hannaway DB, Zhu Y, Liu L, Cao W, et al. Quantitative classification of rice (Oryza sativa L.) root length and diameter using image analysis. PLoS ONE. 2017;12(1):e0169968. https://doi.org/10.1371/journal.pone.0169968.
Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology. 2011;36(4):433–45 https://doi.org/10.1111/j.1442-9993.2010.02157.x.
Article
Google Scholar
Lugli LF, Rosa JS, Andersen KM, Di Ponzio R, Almeida RV, Pires M, et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 2021;230(1):116–28 https://doi.org/10.1111/nph.17154.
Article
CAS
PubMed
Google Scholar
Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, et al. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol. 2005;46(1):174–84 https://doi.org/10.1093/pcp/pci011.
Article
PubMed
CAS
Google Scholar
Vejchasarn P, Lynch JP, Brown KM. Genetic variability in phosphorus responses of rice root phenotypes. Rice. 2016;9(1):29 https://doi.org/10.1186/s12284-016-0102-9.
Article
PubMed
PubMed Central
Google Scholar
Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol. 2019;223(2):882–95 https://doi.org/10.1111/nph.15833.
Article
CAS
PubMed
Google Scholar
Heppell J, Talboys P, Payvandi S, Zygalakis KC, Fliege J, Withers PJ, et al. How changing root system architecture can help tackle a reduction in soil phosphate (P) levels for better plant P acquisition. Plant Cell Environ. 2015;38(1):118–28 https://doi.org/10.1111/pce.12376.
Article
CAS
PubMed
Google Scholar
da Silva A, Bruno IP, Franzini VI, Marcante NC, Benitiz L, Muraoka T. Phosphorus uptake efficiency, root morphology and architecture in Brazilian wheat cultivars. J Radioanal Nucl Ch. 2015;307(2):1055–63 https://doi.org/10.1007/s10967-015-4282-3.
Article
CAS
Google Scholar
Chiou TJ, Lin SI. Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol. 2011;62:185–206 https://doi.org/10.1146/annurev-arplant-042110-103849.
Article
CAS
PubMed
Google Scholar
Zhang Z, Liao H, Lucas WJ. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol. 2014;56(3):192–220 https://doi.org/10.1111/jipb.12163.
Article
CAS
PubMed
Google Scholar
Bari R, Datt Pant B, Stitt M, Scheible WR. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 2006;141(3):988–99 https://doi.org/10.1104/pp.106.079707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Z, Wang Z, Lv Q, Shi J, Zhong Y, Wu P, et al. SPX proteins regulate pi homeostasis and signaling in different subcellular level. Plant Signal Behav. 2015;10(9):e1061163 https://doi.org/10.1080/15592324.2015.1061163.
Article
PubMed
PubMed Central
CAS
Google Scholar
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39(8):1033–7 https://doi.org/10.1038/ng2079.
Article
CAS
PubMed
Google Scholar
Huang CY, Shirley N, Genc Y, Shi BJ, Langridge P. Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiol. 2011;156(3):1217–29 https://doi.org/10.1104/pp.111.178459.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, et al. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 2005;138(4):2061–74 https://doi.org/10.1104/pp.105.060061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagarajan VK, Smith AP. Ethylene's role in phosphate starvation signaling: more than just a root growth regulator. Plant Cell Physiol. 2012;53(2):277–86 https://doi.org/10.1093/pcp/pcr186.
Article
CAS
PubMed
Google Scholar
Jiang C, Gao X, Liao L, Harberd NP, Fu X. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol. 2007;145(4):1460–70 https://doi.org/10.1104/pp.107.103788.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Z, Baskin TI, Brown KM, Lynch JP. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol. 2003;131(3):1381–90 https://doi.org/10.1104/pp.012161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A. 2005;102(33):11934–9 https://doi.org/10.1073/pnas.0505266102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tawaraya K, Horie R, Saito A, Shinano T, Wagatsuma T, Saito K, et al. Metabolite profiling of shoot extracts, root extracts, and root exudates of rice plant under phosphorus deficiency. J Plant Nutr. 2013;36(7):1138–59 https://doi.org/10.1080/01904167.2013.780613.
Article
CAS
Google Scholar
Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N, et al. Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol. 2008;49(5):691–703 https://doi.org/10.1093/pcp/pcn044.
Article
CAS
PubMed
Google Scholar
Ganie AH, Ahmad A, Pandey R, Aref IM, Yousuf PY, Ahmad S, et al. Metabolite profiling of low-P tolerant and low-P sensitive maize genotypes under phosphorus starvation and restoration conditions. PLoS One. 2015;10(6):e0129520 https://doi.org/10.1371/journal.pone.0129520.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, et al. Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol. 2007;144(2):752–67 https://doi.org/10.1104/pp.107.096958.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tawaraya K, Horie R, Shinano T, Wagatsuma T, Saito K, Oikawa A. Metabolite profiling of soybean root exudates under phosphorus deficiency. Soil Sci Plant Nutr. 2014;60(5):679–94 https://doi.org/10.1080/00380768.2014.945390.
Article
CAS
Google Scholar
Wang F, Deng M, Xu J, Zhu X, Mao C. Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol. 2018;74:114–22 https://doi.org/10.1016/j.semcdb.2017.06.013.
Article
CAS
PubMed
Google Scholar
Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell. 2006;18(2):412–21 https://doi.org/10.1105/tpc.105.038943.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manske GGB, Ortiz-Monasterio JI, van Ginkel M, González RM, Fischer RA, Rajaram S, et al. Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. Eur J Agron. 2001;14(4):261–74 https://doi.org/10.1016/S1161-0301(00)00099-X.
Article
CAS
Google Scholar
Li H, Liu J, Li G, Shen J, Bergstrom L, Zhang F. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio. 2015;44(Suppl 2):S274–85 https://doi.org/10.1007/s13280-015-0633-0.
Article
PubMed
CAS
Google Scholar
Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, et al. Ecology. Controlling eutrophication: nitrogen and phosphorus. Science. 2009;323(5917):1014–5 https://doi.org/10.1126/science.1167755.
Article
CAS
PubMed
Google Scholar
Ma WQ, Ma L, Li JH, Wang FH, Sisák I, Zhang FS. Phosphorus flows and use efficiencies in production and consumption of wheat, rice, and maize in China. Chemosphere. 2011;84(6):814–21 https://doi.org/10.1016/j.chemosphere.2011.04.055.
Article
CAS
PubMed
Google Scholar
Zhang W, Wang J, Jun J, Wang ZG, An DG, Zhang XQ, et al. Development of “Kn199” new winter wheat variety and its cultivation in China. Chin J Eco-Agric. 2011;19(5):1215–9.
Google Scholar
Zhao H, Zhang W, Wang J, Ji J, Wang ZG, Li JM. Analysis of high and stable yield characteristics of “Kn199” winter wheat cultivar. Chin J Eco-Agric. 2011;19(5):1220–8.
Google Scholar
Quan-you L, Yi-ping T, Jian-hua S, Ji-yun L. Study on optimal sowing density and fertilizer application rate for cultivating high quality wheat Xiaoyan 54 in Beijing area. Acta Bot Boreal-Occident Sin. 2001;21(3):592–496.
Google Scholar
Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001;15(16):2122–33 http://www.genesdev.org/cgi/doi/10.1101/gad.204401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abu-Zaitoon YM. Phylogenetic analysis of putative genes involved in the tryptophan-dependent pathway of auxin biosynthesis in rice. Appl Biochem Biotechnol. 2014;172(5):2480–95 https://doi.org/10.1007/s12010-013-0710-4.
Article
CAS
PubMed
Google Scholar
Zhou JJ, Luo J. The PIN-FORMED auxin efflux carriers in plants. Int J Mol Sci. 2018;19:2759 https://doi.org/10.3390/ijms19092759.
Article
PubMed Central
CAS
Google Scholar
Larsen PB. Mechanisms of ethylene biosynthesis and response in plants. In: Guilfoyle T, Hagen G, editors. Plant Hormone Signalling. Essays in Biochemistry. 58. London: Portland Press Ltd; 2015. p. 61–70. https://doi.org/10.1042/bse0580061.
Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis - structure, function, regulation. Phytochemistry. 2009;70(13–14):1532–8 https://doi.org/10.1016/j.phytochem.2009.07.032.
Article
CAS
PubMed
Google Scholar
Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 2014;217(Pt 1):67–75 https://doi.org/10.1242/jeb.089938.
Article
CAS
PubMed
Google Scholar
del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell. 2006;18(9):2224–35 https://doi.org/10.1105/tpc.105.039651.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 2001;127(3):803–16 https://doi.org/10.1104/pp.010324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han YY, Zhou S, Chen YH, Kong X, Xu Y, Wang W. The involvement of expansins in responses to phosphorus availability in wheat, and its potentials in improving phosphorus efficiency of plants. Plant Physiol Biochem. 2014;78:53–62 https://doi.org/10.1016/j.plaphy.2014.02.016.
Article
CAS
PubMed
Google Scholar
Teng W, Zhao YY, Zhao XQ, He X, Ma WY, Deng Y, et al. Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat. Front Plant Sci. 2017;8:543 https://doi.org/10.3389/fpls.2017.00543.
PubMed
PubMed Central
Google Scholar
Zobel RW, Kinraide TB, Baligar VC. Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil. 2007;297(1–2):243–54 https://doi.org/10.1007/s11104-007-9341-2.
Article
CAS
Google Scholar
Yuan ZY, Chen HY. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc Biol Sci. 2012;279(1743):3796–802 https://doi.org/10.1098/rspb.2012.0955.
CAS
PubMed
PubMed Central
Google Scholar
Zhao DY, Zheng SS, Naeem MK, Niu JQ, Wang N, Li ZJ, et al. Screening wheat genotypes for better performance on reduced phosphorus supply by comparing glasshouse experiments with field trials. Plant Soil. 2018;430(1–2):349–60 https://doi.org/10.1007/s11104-018-3739-x.
Article
CAS
Google Scholar
Long L, Ma X, Ye L, Zeng J, Chen G, Zhang G. Root plasticity and pi recycling within plants contribute to low-P tolerance in Tibetan wild barley. BMC Plant Biol. 2019;19(1):341 https://doi.org/10.1186/s12870-019-1949-x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Borch K, Bouma TJ, Lynch JP, Brown KM. Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ. 1999;22(4):425–31 https://doi.org/10.1046/j.1365-3040.1999.00405.x.
Article
CAS
Google Scholar
Ren Y, Qian Y, Xu Y, Zou C, Liu D, Zhao X, et al. Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Front Plant Sci. 2017;8:2096 https://doi.org/10.3389/fpls.2017.02096.
Article
PubMed
PubMed Central
Google Scholar
Park J, Nguyen KT, Park E, Jeon JS, Choi G. DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell. 2013;25(3):927–43 https://doi.org/10.1105/tpc.112.108951.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lan P, Li W, Schmidt W. ‘Omics’ approaches towards understanding plant phosphorus acquisition and use. In: Plaxton WC, Lambers H, editors. Annual Plant Reviews. Wiley, Ltd; 2015. p. 66–80. https://doi.org/10.1002/9781118958841.ch3.
Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J. Plant hormones and nutrient signaling. Plant Mol Biol. 2009;69(4):361–73 https://doi.org/10.1007/s11103-008-9380-y.
Article
CAS
PubMed
Google Scholar
Nolan KE, Kurdyukov S, Rose RJ. Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot. 2009;60(6):1759–71 https://doi.org/10.1093/jxb/erp046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh A, Khurana P. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep. 2017;7(1):12368 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620050/.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo J, Liu Y, Zhang H, Wang J, Chen Z, Luo L, et al. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. BMC Plant Biol. 2020;20(1):85 https://doi.org/10.1186/s12870-020-2283-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo W, Zhao J, Li X, Qin L, Yan X, Liao H. A soybean beta-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J. 2011;66(3):541–52 https://doi.org/10.1111/j.1365-313X.2011.04511.x.
Article
CAS
PubMed
Google Scholar
Liu N, Shang W, Li C, Jia L, Wang X, Xing G, et al. Evolution of the SPX gene family in plants and its role in the response mechanism to phosphorus stress. Open Biol. 2018;8:170231 https://doi.org/10.1098/rsob.170231.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, et al. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci U S A. 2014;111(41):14953–8 https://doi.org/10.1073/pnas.1404680111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campos PMD, Cornejo P, Rial C, Borie F, Varela RM, Seguel A, et al. Phosphate acquisition efficiency in wheat is related to root:shoot ratio, strigolactone levels, and PHO2 regulation. J Exp Bot. 2019;70(20):5631–42 https://doi.org/10.1093/jxb/erz349.
Article
CAS
Google Scholar
Neumann G, Römheld V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil. 1999;211(1):121–30 https://doi.org/10.1023/A:1004380832118.
Article
CAS
Google Scholar
Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci. 2012;69(19):3225–43 https://doi.org/10.1007/s00018-012-1091-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. Protein degradation - an alternative respiratory substrate for stressed plants. Trends Plant Sci. 2011;16(9):489–98 https://doi.org/10.1016/j.tplants.2011.05.008.
PubMed
Google Scholar
Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, et al. The transcriptional landscape of polyploid wheat. Science. 2018;361(6403):eaar6089. https://doi.org/10.1126/science.aar6089.
Karim MR, Dong X, Zheng L, Shen R, Lan P. Can aluminum tolerant wheat cultivar perform better under phosphate deficient conditions? Int J Mol Sci. 2018;19(10):2964. https://doi.org/10.3390/ijms19102964.
Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, et al. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 2009;151(1):262–74 https://doi.org/10.1104/pp.109.141051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8 https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–94 https://doi.org/10.1093/nar/gky310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods--a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–7 https://doi.org/10.1093/bioinformatics/btm069.
Article
CAS
PubMed
Google Scholar