Galan SV. Trends in world mango production and marketing. Acta Horticulturae. 2017;(1183):351–64. https://doi.org/10.17660/ActaHortic.2017.1183.51.
FAOSTAT F. Food and agriculture data. 2011. 2017.
Google Scholar
Galán Saúco V. Trends in world mango production and marketing. In: XI International Mango Symposium 1183; 2015.
Google Scholar
Hou D. Mangifera. Flora Malesiana. 1978;8:423–40.
Google Scholar
Kostermans A, Bompard J-M. The Mangoes: Their Botany, Nomenclature. London: Horticulture and Utilisation Academic Press; 1993.
Google Scholar
Bompard J. Taxonomy and systematics. In: The mango: Botany, production and uses. Wallingford: CAB International; 2009. p. 19–41.
Chapter
Google Scholar
Mukherjee SK. The mango—its botany, cultivation, uses and future improvement, especially as observed in India. Econ Bot. 1953;7(2):130–62.
Article
Google Scholar
Mukherjee S, Litz RE. Introduction: botany and importance. In: The mango: Botany, production and uses. 2nd ed; 2009. p. 1–18.
Google Scholar
Bompard, JM. Taxonomy and systematics. The Mango: Botany, Production and Uses, 2nd ed. Wallingford: CABI; 2009. p. 19–41.
Gruezo WS, Mangifera l. In: Verheij EWM, Coronel RE (eds) Plant resources of south-east Asia no 2: edible fruits and nuts. Wageningen: Pudoc-DLO; 1992 p. 203–6.
Mukherjee SK. Introduction: botany and importance. In: Litz R, editor. The mango; botany, production and uses. Wallingford: CAB International; 1997. p. 1–19.
Google Scholar
Bally IS, Dillon NL. Mango (Mangifera indica L.) Breeding. In: Advances in Plant Breeding Strategies: Fruits. Cham: Springer; 2018. p. 811–96.
Kuhn DN, Bally ISE, Dillon NL, Innes D, Groh AM, Rahaman J, et al. Genetic Map of Mango: A Tool for Mango Breeding. Front Plant Sci. 2017;8:577. https://doi.org/10.3389/fpls.2017.00577 PubMed PMID: WOS:000399524800001.
Article
PubMed
PubMed Central
Google Scholar
Knight RJ, Schnell RJ. Mango introduction in Florida and the’haden’cultivar’s significance to the modern industry. Econ Bot. 1994;48(2):139–45.
Article
CAS
Google Scholar
Knight R Jr. Origin and world importance of tropical and subtropical fruit crops; 1980.
Google Scholar
Schnell RJ, Knight RJ. Random amplified polymorphic DNA (RAPD) markers for estimating genetic relationships in Mangifera indica L. HortScience. 1992;27(6):574c.
Article
Google Scholar
Johnson G. Introduction of the Mango to Australia. Proc R Soc Qld. 2000;109:83.
Google Scholar
Bally ISE, editor. Mango breeding activities in Australia. 4th International symposium on tropical and subtropical fruits. Bogor: International Society for Horticultural Science, Acta Horticulturae; 2008. (in press).3-7 November 2008
Google Scholar
Iyer C, Degani C. Classical breeding and genetics. In: The Mango-Botany, Production and Uses. Wallingford Oxon: CAB International; 1997. p. 49–68.
Google Scholar
Iyer CPA, Schnell RJ. Breeding and genetics. In: Litz RE, editor. The mango botany, production and uses 2nd edition. 2nd ed. Wallingford, Oxen: CABI International; 2009. p. 67–96.
Chapter
Google Scholar
Kulkarni VJ, Bally ISE, Brettell RIS, Johnson PR, Hamilton D. The Australian National Mango Breeding Program - in search of improved cultivars for the new millennium. Acta Hortic. 2000;575:287–93.
Google Scholar
Hardner CM, Bally ISE, Wright CL. Prediction of breeding values for average fruit weight in mango using a multivariate individual mixed model. Euphytica. 2012;186(2):463–77. https://doi.org/10.1007/s10681-012-0639-7 PubMed PMID: WOS:000304698100017.
Article
Google Scholar
Sharma RK, Singh PK, Joshi AK, Bhardwaj SC, Bains NS, Singh S. Protecting south Asian wheat production from stem rust (Ug99) epidemic. J Phytopathol. 2013;161(5):299–307.
Article
CAS
Google Scholar
Tharanathan RN, Yashoda HM, Prabha TN. Mango (Mangifera indica L.), "The king of fruits" - an overview. Food Rev Int. 2006;22(2):95–123. https://doi.org/10.1080/87559120600574493 PubMed PMID: WOS:000236762800001.
Article
CAS
Google Scholar
Ali ZM, Chin LH, Lazan H. A comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits. Plant Sci. 2004;167(2):317–27. https://doi.org/10.1016/j.plantsci.2004.03.030 PubMed PMID: WOS:000222280600016.
Article
CAS
Google Scholar
Warschefsky EJ, von Wettberg EJB. Population genomic analysis of mango (Mangifera indica) suggests a complex history of domestication. New Phytol. 2019;222(4):2023–37. https://doi.org/10.1111/nph.15731 PubMed PMID: WOS:000467301100030.
Article
CAS
PubMed
Google Scholar
Dillon NL, Bally ISE, Wright CL, Hucks L, Innes DJ, Dietzgen RG. Genetic diversity of the Australian National Mango Genebank. Sci Horticulturae. 2013;150:213–26. https://doi.org/10.1016/j.scienta.2012.11.003 PubMed PMID: WOS:000315557600032.
Article
Google Scholar
Dillon N, Innes D, Bally I, Wright C, Devitt L, Dietzgen R. Expressed sequence tag-simple sequence repeat (EST-SSR) marker resources for diversity analysis of mango (Mangifera indica L.). Diversity. 2014;6(1):72–87.
Article
Google Scholar
Kuhn D, Dillon N, Innes D, Wu L-S, Mockaitis K, editors. Development of single nucleotide polymorphism (SNP) markers from the mango (Mangifera indica) transcriptome for mapping and estimation of genetic diversity. ISHS Proc Int Symp on Papaya, Pineapple and Mango 2016.
Google Scholar
Kuhn DN, Dillon N, Bally I, Groh A, Rahaman J, Warschefsky M, et al. Estimation of genetic diversity and relatedness in a mango germplasm collection using SNP markers and a simplified visual analysis method. Sci Horticulturae. 2019;252:156–68. https://doi.org/10.1016/j.scienta.2019.03.037 PubMed PMID: WOS:000467513900021.
Article
Google Scholar
Kuhn D, Livingstone D III, Richards J, Manosalva P, Van den Berg N, Chambers A. Application of genomic tools to avocado (Persea americana) breeding: SNP discovery for genotyping and germplasm characterization. Sci Hortic. 2019;246:1–11.
Article
CAS
Google Scholar
Sherman A, Rubinstein M, Eshed R, Benita M, Ish-Shalom M, Sharabi-Schwager M, et al. Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome. BMC Plant Biology. 2015;15:277. https://doi.org/10.1186/s12870-015-0663-6 PubMed PMID: WOS:000364627700001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo C, Shu B, Yao QS, Wu HX, Xu WT, Wang SB. Construction of a High-Density Genetic Map Based on Large-Scale Marker Development in Mango Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). Front Plant Sci. 2016;7:1310. https://doi.org/10.3389/fpls.2016.01310 PubMed PMID: WOS:000382123800001.
Article
PubMed
PubMed Central
Google Scholar
Dang Z, Chen Y. Construction of a genetic linkage map of mango based on SRAP, AFLP and ISSR markers. Agric Biotechnol. 2017;6(6):9–16.
Google Scholar
Azim MK, Khan IA, Zhang Y. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome. Plant Mol. Biol. 2014;85(1–2):193–208. https://doi.org/10.1007/s11103-014-0179-8 PubMed PMID: WOS:000335756900014.
Article
CAS
PubMed
Google Scholar
Dautt-Castro M, Ochoa-Leyva A, Contreras-Vergara CA, Pacheco-Sanchez MA, Casas-Flores S, Sanchez-Flores A, et al. Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening. Front Plant Sci. 2015;6:62.
Article
PubMed
PubMed Central
Google Scholar
Dautt-Castro M, Ochoa-Leyva A, Contreras-Vergara CA, Muhlia-Almazan A, Rivera-Dominguez M, Casas-Flores S, et al. Mesocarp RNA-Seq analysis of mango (Mangifera indica L.) identify quarantine postharvest treatment effects on gene expression. Sci Horticulturae. 2018;227:146–53. https://doi.org/10.3389/fpls.2015.00062 PubMed PMID: WOS:000414107700018.
Luria N, Sela N, Yaari M, Feygenberg O, Kobiler I, Lers A, et al. De-novo assembly of mango fruit peel transcriptome reveals mechanisms of mango response to hot water treatment. BMC Genomics. 2014;15:957. https://doi.org/10.1186/1471-2164-15-957 PubMed PMID: WOS:000345250700001.
Article
PubMed
PubMed Central
Google Scholar
Pandit SS, Kulkarni RS, Giri AP, Kollner TG, Degenhardt J, Gershenzon J, et al. Expression profiling of various genes during the fruit development and ripening of mango. Plant Physiol. Biochem. 2010;48(6):426–33. https://doi.org/10.1016/j.plaphy.2010.02.012 PubMed PMID: WOS:000278798900006.
Article
CAS
PubMed
Google Scholar
Wu HX, Jia HM, Ma XW, Wang SB, Yao QS, Xu WT, et al. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits. J. Proteomics. 2014;105:19–30. https://doi.org/10.1016/j.jprot.2014.03.030 PubMed PMID: WOS:000338600000003.
Article
CAS
PubMed
Google Scholar
Arumuganathan K, Earle E. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 1991;9(3):208–18.
Article
CAS
Google Scholar
Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017;34(7):1812–9. https://doi.org/10.1093/molbev/msx116 PubMed PMID: WOS:000402754400023.
Article
CAS
PubMed
Google Scholar
Wannan BS. Analysis of generic relationships in Anacardiaceae. Blumea. 2006;51(1):165–95 PubMed PMID: WOS:000237710400009.
Article
Google Scholar
Pierozzi NI, Rossetto CJ. Chromosome characterization of two varieties of Mangifera indica L. Rev Bras Frutic. 2011;33(1):546–51. https://doi.org/10.1590/S0100-29452011000500074 PubMed PMID: WOS:000297793700073.
Article
Google Scholar
Aliyu O, Awopetu J. Chromosome studies in cashew (Anacardium occidentale L.). Afr J Biotechnol. 2007;6(2):131–6.
Gill B. Cytological evolution in the woody taxa of Pachmarhi Hills. J Cytol Genet. 1990;25:308–20.
Google Scholar
Ila HB, Kafkas S, Topaktas M. Chromosome numbers of four Pistacia (Anacardiaceae) species. J Horticult Sci Biotechnol. 2003;78(1):35–8 PubMed PMID: WOS:000181056600007.
Article
Google Scholar
Love A. IOPB chromosome number reports XL. Taxon. 1973;22(2):185–291.
Singhal V, Gill B. Chromosomal studies in some members of Anacardiaceae. J Cytol Genet. 1990;25:36–42.
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. https://doi.org/10.1186/s13059-015-0721-2 PubMed PMID: WOS:000358984500001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, et al. The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Res. 2015;43(D1):D1036–D41. https://doi.org/10.1093/nar/gku1195 PubMed PMID: WOS:000350210400152.
Article
CAS
PubMed
Google Scholar
Wang P, Luo YF, Huang JF, Gao SH, Zhu GP, Dang ZG, et al. The genome evolution and domestication of tropical fruit mango. Genome Biol. 2020;21(1):60. https://doi.org/10.1186/s13059-020-01959-8 PubMed PMID: WOS:000519049000001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giovane A, Servillo L, Balestrieri C, Raiola A, D'Avino R, Tamburrini M, et al. Pectin methylesterase inhibitor. Bba-Proteins Proteom. 2004;1696(2):245–52. https://doi.org/10.1016/j.bbapap.2003.08.011 PubMed PMID: WOS:000189080200012.
Article
CAS
Google Scholar
Reca IB, Lionetti V, Camardella L, D'Avino R, Giardina T, Cervone F, et al. A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1. Plant Mol. Biol. 2012;79(4–5):429–42. https://doi.org/10.1007/s11103-012-9921-2 PubMed PMID: WOS:000304913200008.
Article
CAS
PubMed
Google Scholar
Wang MJ, Yuan DJ, Gao WH, Li Y, Tan JF, Zhang XL. A Comparative Genome Analysis of PME and PMEI Families Reveals the Evolution of Pectin Metabolism in Plant Cell Walls. PLoS One. 2013;8(8):e72082. https://doi.org/10.1371/journal.pone.0072082 PubMed PMID: WOS:000323097300177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan C, Liu ZY, Huang SN, Li CY, Ren J, Tang XY, et al. Pectin methylesterase inhibitor (PMEI) family can be related to male sterility in Chinese cabbage (Brassica rapa ssp pekinensis). Mol. Genet. Genomics. 2018;293(2):343–57. https://doi.org/10.1007/s00438-017-1391-4 PubMed PMID: WOS:000427630400004.
Article
CAS
PubMed
Google Scholar
Kim J, Shiu SH, Thoma S, Li WH, Patterson SE. Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol. 2006;7(9):87. https://doi.org/10.1186/gb-2006-7-9r87 PubMed PMID: WOS:000242490400013.
Article
Google Scholar
Dautt-Castro M, Lopez-Virgen AG, Ochoa-Leyva A, Contreras-Vergara CA, Sortillon-Sortillon AP, Martinez-Tellez MA, et al. Genome-Wide Identification of Mango (Mangifera indica L.) Polygalacturonases: Expression Analysis of Family Members and Total Enzyme Activity During Fruit Ripening. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00969 PubMed PMID: WOS:000477868600001.
Cao K, Li Y, Deng CH, Gardiner SE, Zhu GR, Fang WC, et al. Comparative population genomics identified genomic regions and candidate genes associated with fruit domestication traits in peach. Plant Biotechnol J. 2019;17(10):1954–70. https://doi.org/10.1111/pbi.13112 PubMed PMID: WOS:000486082300012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bally ISE, Lu P, Johnson PR. Mango breeding. Breed Plant Tree Crops Trop Species. New York: Springer; 2009. p. 51–82.
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191. https://doi.org/10.1126/science.aar7191 661-+. PubMed PMID: WOS:000442818200032.
Article
CAS
Google Scholar
Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551(7681):498-+. https://doi.org/10.1038/nature24486 PubMed PMID: WOS:000416043700044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I, Barad O, et al. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize. Plant Cell. 2016;28(11):2700–14. https://doi.org/10.1105/tpc.16.00353 PubMed PMID: WOS:000390800000003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang TY, et al. High-resolution genetic mapping of maize pan-genome sequence anchors. Nat. Commun. 2015;6:6914. https://doi.org/10.1038/ncomms7914 PubMed PMID: WOS:000353704100022.
Article
CAS
PubMed
Google Scholar
Yang N, Xu XW, Wang RR, Peng WL, Cai LC, Song JM, et al. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat. Commun. 2017;8:1874. https://doi.org/10.1038/s41467-017-02063-5 PubMed PMID: WOS:000416895400016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell MS, Law MY, Holt C, Stein JC, Moghe GD, Hufnagel DE, et al. MAKER-P: A Tool Kit for the Rapid Creation, Management, and Quality Control of Plant Genome Annotations. Plant Physiol. 2014;164(2):513–24. https://doi.org/10.1104/pp.113.230144 PubMed PMID: WOS:000331132300002.
Article
CAS
PubMed
Google Scholar
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://doi.org/10.1093/bioinformatics/btv351 PubMed PMID: WOS:000362845400018.
Article
CAS
PubMed
Google Scholar
Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. https://doi.org/10.1186/s13742-015-0047-8 PubMed PMID: WOS:000365662000001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laetsch DR, Blaxter ML. KinFin: Software for Taxon-Aware Analysis of Clustered Protein Sequences. G3-Genes Genom Genet. 2017;7(10):3349–57. https://doi.org/10.1534/g3.117.300233 PubMed PMID: WOS:000412549600012.
Article
CAS
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71. https://doi.org/10.1093/bioinformatics/btl097 PubMed PMID: WOS:000237319300018.
Article
CAS
PubMed
Google Scholar
Zeng L, Tu XL, Dai H, Han FM, Lu BS, Wang MS, et al. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biol. 2019;20:79. https://doi.org/10.1186/s13059-019-1686-3 PubMed PMID: WOS:000465145200002.
Article
PubMed
PubMed Central
Google Scholar
Zwaenepoel A, Van de Peer Y. wgd-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics. 2019;35(12):2153–5. https://doi.org/10.1093/bioinformatics/bty915 PubMed PMID: WOS:000474844600023.
Article
CAS
PubMed
Google Scholar
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–W8. https://doi.org/10.1093/nar/gkm286 PubMed PMID: WOS:000255311500049.
Article
PubMed
PubMed Central
Google Scholar
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:18. https://doi.org/10.1186/1471-2105-9-18 PubMed PMID: WOS:000253685900001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou SJ, Jiang N. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol. 2018;176(2):1410–22. https://doi.org/10.1104/pp.17.01310 PubMed PMID: WOS:000424285500035.
Article
CAS
PubMed
Google Scholar
Bao WD, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA-Uk. 2015;6:UNSP 11. https://doi.org/10.1186/s13100-015-0041-9 PubMed PMID: WOS:000355907900001.
Article
Google Scholar
Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009;25(1):4.10. 1–4.. 4.
Article
Google Scholar