Yan SH, Song W, Guo JY. Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems - a review. Crit Rev Biotechnol. 2017;37(2):218–28.
Article
PubMed
Google Scholar
Aboul-Enein AM, Al-Abd AM, Shalaby E, Abul-Ela F, Nasr-Allah AA, Mahmoud AM, El-Shemy HA. Eichhornia crassipes (Mart) Solms: from water parasite to potential medicinal remedy. Plant Signal Behav. 2011;6(6):834–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu JJ, Ding Y, Zhuang QJ. Invasion and control of water hyacinth (Eichhornia crassipes) in China. J Zhejiang Univ Sci B. 2006;7(8):623–6.
Article
PubMed
PubMed Central
Google Scholar
Akinbile CO, Yusoff MS. Assessing water hyacinth (Eichhornia Crassopes) and lettuce (Pistia Stratiotes) effectiveness in aquaculture wastewater treatment. Int J Phytoremediat. 2012;14(3):201–11.
Article
CAS
Google Scholar
Henares MNP, Camargo AFM. Treatment efficiency of effluent prawn culture by wetland with floating aquatic macrophytes arranged in series/ Eficiencia de wetland com macrofitas aquaticas flutuantes dispostas em serie Para o tratamento do efluente do cultivo de camarao. Braz J Biol. 2014;74(4):906–12.
Article
CAS
PubMed
Google Scholar
Wu X, Wu H, Ye J. Purification effects of two eco-ditch systems on Chinese soft-shelled turtle greenhouse culture wastewater pollution. Environ Sci Pollut Res Int. 2014;21(8):5610–8.
Article
CAS
PubMed
Google Scholar
Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag. 2015;163:125–33.
Article
CAS
Google Scholar
Sipaúba-Tavares LH, Florêncio T, Scardoeli-Truzzi B. Aquaculture biological waste as culture medium to cultivation of Ankistrodesmus gracilis (Reinsch) Korshikov. Braz J Biol. 2018;78:579–87.
Article
PubMed
Google Scholar
Das A, Ghosh P, Paul T, Ghosh U, Pati BR, Mondal KC. Production of bioethanol as useful biofuel through the bioconversion of water hyacinth ( Eichhornia crassipes ). Biotech. 2016;6(1):70.
Google Scholar
Lu W, Wang C, Yang Z. The preparation of high caloric fuel (HCF) from water hyacinth by deoxy-liquefaction. Bioresour Technol. 2009;100(24):6451–6.
Article
CAS
PubMed
Google Scholar
de Vasconcelos GA, Veras RM, de Lima SJ, Cardoso DB, de Castro SP, de Morais NN, Souza AC. Effect of water hyacinth (Eichhornia crassipes) hay inclusion in the diets of sheep. Trop Anim Health Prod. 2016;48(3):539–44.
Article
PubMed
Google Scholar
El-Shinnawi MM, El-Din MNA, El-Shimi SA, Badawi MA. Biogas production from crop residues and aquatic weeds. Resour Conserv Recy. 1989;3(1):33–45.
Article
Google Scholar
Mishima D, Kuniki M, Sei K, Soda S, Ike M, Fujita M. Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour Technol. 2008;99(7):2495–500.
Article
CAS
PubMed
Google Scholar
Bernard SM, Habash DZ. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol. 2010;182(3):608–20.
Article
CAS
Google Scholar
Swarbreck SM, Defoin-Platel M, Hindle M, Saqi M, Habash DZ. New perspectives on glutamine synthetase in grasses. J Exp Bot. 2011;62(4):1511–22.
Article
CAS
PubMed
Google Scholar
Van RJ, Belrhali H, Abratt V, Sewell BT. Proteolysis of the type III glutamine synthetase from Bacteroides fragilis causes expedient crystal-packing rearrangements. Acta Crystallogr F. 2011;67(3):358–63.
Article
CAS
Google Scholar
Tingey SV, Walker EL, Coruzzi GM. Glutamine synthetase genes of pea encode distinct polypeptides which are differentially expressed in leaves, roots and nodules. EMBO J. 1987;6(1):1–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cren M, Hirel B. Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol. 1999;40(12):1187–93.
Article
CAS
Google Scholar
Zhang ZY, Xiong SP, Wei YH, Meng XD, Wang XC, Ma XM. The role of glutamine synthetase isozymes in enhancing nitrogen use efficiency of N-efficient winter wheat. Sci Rep. 2017;7:12.
CAS
Google Scholar
Caputo C, Criado MV, Roberts IN, Gelso MA, Barneix AJ. Regulation of glutamine synthetase 1 and amino acids transport in the phloem of young wheat plants. Plant Physiol Bioch. 2009;47(5):335–42.
Article
CAS
Google Scholar
El Omari R, Rueda-Lopez M, Avila C, Crespillo R, Nhiri M, Canovas FM. Ammonium tolerance and the regulation of two cytosolic glutamine synthetases in the roots of sorghum. Funct Plant Biol. 2010;37(1):55–63.
Article
CAS
Google Scholar
Goodall AJ, Kumar P, Tobin AK. Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.). Plant Cell Physiol. 2013;54(4):492–505.
Article
CAS
PubMed
Google Scholar
Benfey PN, Ren L, Chua NH. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 1990;9(6):1677–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV. PlantProm: a database of plant promoter sequences. Nucleic Acids Res. 2003;31(1):114–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto YY, Ichida H, Matsui M, Obokata J, Sakurai T, Satou M, Seki M, Shinozaki K, Abe T. Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics. 2007;8(1):67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prändl R, Schöffl F. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant Mol Biol. 1996;31(1):157–62.
Article
PubMed
Google Scholar
Belintani NG, Guerzoni JTS, Moreira RMP, Vieira LGE. Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter. Biol Plantarum. 2012;56(1):71–7.
Article
CAS
Google Scholar
Xu X, Guo S, Chen K, Song H, Liu J, Guo L, Qian Q, Wang H. A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Biotechnol Lett. 2010;32(10):1533–9.
Article
CAS
PubMed
Google Scholar
Bezhani S, Sherameti I, Pfannschmidt T, Oelmuller R. A repressor with similarities to prokaryotic and eukaryotic DNA helicases controls the assembly of the CAAT box binding complex at a photosynthesis gene promoter. J Biol Chem. 2001;276(26):23785–9.
Article
CAS
PubMed
Google Scholar
Joshi CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987;15(16):6643–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin H, Zhang Z, Liu M, Wang Y, Wen X, Yan S, Zhang Y, Liu H. Efficient assimilation of cyanobacterial nitrogen by water hyacinth. Bioresour Technol. 2017;241:1197–200.
Article
CAS
PubMed
Google Scholar
Zhang YY, Liu HQ, Yan SH, Wen XZ, Qin HJ, Wang Z, Zhang ZY. Phosphorus removal from the hyper-eutrophic Lake Caohai (China) with large-scale water hyacinth cultivation. Environ Sci Pollut R. 2019;26(13):12975–84.
Article
CAS
Google Scholar
Andrade HM, Oliveira JA, Farnese FS, Ribeiro C, Silva AA, Campos FV, Neto JL. Arsenic toxicity: cell signalling and the attenuating effect of nitric oxide in Eichhornia crassipes. Biol Plant. 2016;60(1):173–80.
Article
CAS
Google Scholar
de Souza Reis INR, de Oliveira JA, Ventrella MC, Otoni WC, Marinato CS, de Matos LP. Involvement of glutathione metabolism in Eichhornia crassipes tolerance to arsenic. Plant Biol. 2020;22(2):346–50.
Article
PubMed
CAS
Google Scholar
Malik A. Environmental challenge Vis a Vis opportunity: the case of water hyacinth. Environ Int. 2007;33(1):122–38.
Article
CAS
PubMed
Google Scholar
Moura Júnior EG, Pott A, Severi W, Zickel CS. Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs. Braz J Biol. 2019;79(1):7.
Article
Google Scholar
Fu M, Jiang L, Li Y, Yan G, Jinping P. Identification of gene fragments related to nitrogen deficiency in Eichhornia crassipes (Pontederiaceae). Rev Biol Trop. 2014;62(4):1637–48.
Article
PubMed
Google Scholar
Fu M, Jiang L, Yan G. Identification of GS1a, GS1b and GS1c genes from Eichhornia crassipes and their transcript analysis in response to different nitrogen sources. Pak J Bot. 2018;50(6):2197–204.
CAS
Google Scholar
Thomsen HC, Eriksson D, Møller IS, Schjoerring JK. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci. 2014;19(10):656–63.
Article
CAS
PubMed
Google Scholar
Gao YJ, de Bang TC, Schjoerring JK. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2. Plant Biotechnol J. 2019;17(7):1209–21.
Article
CAS
PubMed
Google Scholar
Hu MY, Zhao XQ, Liu Q, Hong X, Zhang W, Zhang YJ, Sun LJ, Li H, Tong YP. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol J. 2018;16(11):1858–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
James D, Borphukan B, Fartyal D, Ram B, Singho J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM, et al. Concurrent overexpression o f OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses. Front Plant Sci. 2018;9:19.
Article
Google Scholar
Yu HD, Zhang YM, Zhang ZY, Zhang J, Wei YH, Jia XT, Wang XC, Ma XM. Towards identification of molecular mechanism in which the overexpression of wheat cytosolic and plastid glutamine synthetases in tobacco enhanced drought tolerance. Plant Physiol Biochem. 2020;151:608–20.
Article
CAS
PubMed
Google Scholar
Fuentes SI. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot. 2001;52(358):1071–81.
Article
CAS
PubMed
Google Scholar
Gallardo F, Fu J, Canton FR, Garcia-Gutierrez A, Canovas FM, Kirby EG. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta. 1999;210(1):19–26.
Article
CAS
PubMed
Google Scholar
Wei YH, Shi AB, Jia XT, Zhang ZY, Ma XM, Gu MX, Meng XD, Wang XC. Nitrogen supply and leaf age affect the expression of TaGS1 or TaGS2 driven by a constitutive promoter in transgenic tobacco. Genes. 2018;9(8):18.
Article
CAS
Google Scholar
Guseman JM, Webb K, Srinivasan C, Dardick C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J. 2017;89(6):1093–105.
Article
CAS
PubMed
Google Scholar
Gao X, Starr J, Göbel C, Engelberth J, Feussner I, Tumlinson J, Kolomiets M. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol Plant Microbe In. 2008;21(1):98–109.
Article
CAS
Google Scholar
Gutiérrez RA. Systems biology for enhanced plant nitrogen nutrition. Science. 2012;336(6089):1673–5.
Article
PubMed
CAS
Google Scholar
Gutiérrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, et al. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci U S A. 2008;105(12):4939–44.
Article
PubMed
PubMed Central
Google Scholar
El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One. 2012;7(12):e52030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B, Leson L, Martyn A, Nauen J, Grabenhorst N, Mandelkow JF, et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci U S A. 2019;116(31):15735–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koyama T, Ono T, Shimizu M, Jinbo T, Mizuno R, Tomita K, Mitsukawa N, Kawazu T, Kimura T, Ohmiya K, et al. Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. J Biosci Bioeng. 2005;99(1):38–42.
Article
CAS
PubMed
Google Scholar
Chao D, Yuanchun M, Dan Z, Michael W, Zong-Ming C. Meta-analysis of the effect of overexpression of dehydration-responsive element binding family genes on temperature stress tolerance and related responses. Front Plant Sci. 2018;9:15.
Google Scholar
Li Z, Srivastava R, Tang J, Zheng Z, Howell SH. Cis-effects condition the induction of a major unfolded protein response factor, ZmbZIP60, in response to heat stress in maize. Front Plant Sci. 2018;9:833.
Article
PubMed
PubMed Central
Google Scholar
Nitz I, Berkefeld H, Puzio PS, Grundler FM. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci. 2001;161(2):337–46.
Article
CAS
PubMed
Google Scholar
Nonogaki M, Sall K, Nambara E, Nonogaki H. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds. Plant J. 2014;78(3):527–39.
Article
CAS
PubMed
Google Scholar
Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 2004;135(4):1956–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Jiang B, Wu C, Sun S, Hou W, Han T. GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biol. 2014;14(1):245.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lou X, Li X, Li A, Pu M, Shoaib M, Liu D, Sun J, Zhang A, Yang W. The 160 bp insertion in the promoter of Rht-B1i plays a vital role in increasing wheat height. Front Plant Sci. 2016;7(307):307.
PubMed
PubMed Central
Google Scholar
Srivastava AC, Blancaflor EB. The folylpolyglutamate synthetase plastidial isoform is required for postembryonic root development in Arabidopsis. Plant Physiol. 2011;155(5):1237–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah S, Noureen A, Deeba F, Sultana T, Dukowic-Schulze S, Chen C, Naqvi SMS. Transgenic analysis reveals 5′ abbreviated OsRGLP2 promoter(s) as responsive to abiotic stresses. Mol Biotechnol. 2017;59(11–12):459–68.
Article
CAS
PubMed
Google Scholar
Siebertz B, Logemann J, Willmitzer L. Schell J: cis-analysis of the wound-inducible promoter wun1 in transgenic tobacco plants and histochemical localization of its expression. Plant Cell. 1989;1(10):961–8.
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Hou J, Jiang P, Qi S, Xu C, He Q, Ding Z, Wang Z, Zhang K, Li K. Identification of a 467 bp promoter of maize phosphatidylinositol synthase gene (ZmPIS) which confers high-level gene expression and salinity or osmotic stress inducibility in transgenic tobacco. Front Plant Sci. 2016;7:42.
PubMed
PubMed Central
Google Scholar
Niu GL, Gou W, Han XL, Qin C, Zhang LX, Abomohra AE, Ashraf M. Cloning and functional analysis of phosphoethanolamine methyltransferase promoter from maize (Zea mays L.). Int J Mol Sci. 2018;19(1):191–203.
Article
PubMed Central
CAS
Google Scholar
Yu ZH, Han YN, Xiao XG. A PPO promoter from betalain-producing red Swiss chard, directs petiole- and root-preferential expression of foreign gene in anthocyanins-producing plants. Int J Mol Sci. 2015;16(11):27032–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rueda-Lopez M, Crespillo R, Canovas FM, Avila C. Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. Plant J. 2008;56(1):73–85.
Article
CAS
PubMed
Google Scholar
Wang YL, Liu F, Wang W. Kinetics of transcription initiation directed by multiple cis-regulatory elements on the glnAp2 promoter. Nucleic Acids Res. 2016;44(22):10530–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon HB, Park SC, Peng HP, Goodman HM, Dewdney J, Shih MC. Identification of a light-responsive region of the nuclear gene encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Plant Physiol. 1994;105(1):357–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue M, Long Y, Zhao Z, Huang G, Huang K, Zhang T, Jiang Y, Yuan Q, Pei X. Isolation and characterization of a green-tissue promoter from common wild rice (Oryza rufipogon Griff.). Int J Mol Sci. 2018;19(7):2009–21.
Article
PubMed Central
CAS
Google Scholar
Xu L, Ye R, Zheng Y, Wang Z, Zhou P, Lin Y, Li D. Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants. Plant Cell Rep. 2010;29(9):1061–8.
Article
CAS
PubMed
Google Scholar
Huang Z, Gan Z, He Y, Li Y, Liu X, Mu H. Functional analysis of a rice late pollen-abundant UDP-glucose pyrophosphorylase (OsUgp2) promoter. Mol Biol Rep. 2011;38(7):4291–302.
Article
CAS
PubMed
Google Scholar
Rabot A, Portemer V, Peron T, Mortreau E, Leduc N, Hamama L, Coutos-Thevenot P, Atanassova R, Sakr S, Le Gourrierec J. Interplay of sugar, light and gibberellins in expression of Rosa hybrida vacuolar invertase 1 regulation. Plant Cell Physiol. 2014;55(10):1734–48.
Article
CAS
PubMed
Google Scholar
Li X, Sui X, Zhao W, Huang H, Chen Y, Zhang Z. Characterization of cucumber violaxanthin de-epoxidase gene promoter in Arabidopsis. J Biosci Bioeng. 2015;119(4):470–7.
Article
CAS
PubMed
Google Scholar
Gangappa SN, Maurya JP, Yadav V, Chattopadhyay S. The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis. PLoS One. 2013;8(4):e62194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoecker U, Tepperman JM, Quail PH. SPA1, a WD-repeat protein specific to phytochrome a signal transduction. Science. 1999;284(5413):496–9.
Article
CAS
PubMed
Google Scholar
Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6(13):3901–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article
CAS
PubMed
Google Scholar