Damm U, Cannon PF, Woundenberg JH, Crous PW. The Colletotrichum acutatum species complex. Studies in Mycol. 2012;73(1):37–113. https://doi.org/10.3114/sim0010.
Article
CAS
Google Scholar
Nam MH, Park MS, Lee HD, Yu SH. Taxonomic re-evaluation of Colletotrichum gloeosporioides isolated from strawberry in Korea. Plant Pathol J. 2013;29(3):317–22. https://doi.org/10.5423/PPJ.NT.12.2012.0188.
Article
PubMed
PubMed Central
Google Scholar
Aiello D, Carrieri R, Guarnaccia V, Vitale A, Lahoz E, Polizzi G. Characterization and Pathogenicity of Colletotrichum gloeosporioides and C. karstii Causing Preharvest Disease on Citrus sinensis in Italy. J Phytopathol. 2015;163(3):168–177. doi.org/https://doi.org/10.1111/jph.12299
Guarnaccia V, Aiello D, Cirvilleri G, Polizzi G, Susca A, Epifani F, Perrone G. Characterisation of fungal pathogens associated with stem-end rot of avocado fruit in Italy. III International Symposium on Postharvest Pathology: Using Science to Increase Food Availability. Acta Hort. 2016;1144:133–9. https://doi.org/10.17660/ActaHortic.2016.1144.19.
Article
Google Scholar
Liu F, Tang G, Zheng X, Li Y, Sun X, Qi X, Zhou Y, Xu J, Chen H, Chang X, Zhang S, Gong G. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province. China Scientific Rep. 2016;6:32761. https://doi.org/10.1038/srep32761.
Article
CAS
Google Scholar
de Silva DD, Ades PK, Crous PW, Taylor PWJ. Colletotrichum species associated with chili anthracnose In Australia Plant Pathology 2017;66:254–267 doi: https://doi.org/10.1111/ppa.12572.
de Silva DD, Groenewald JZ, Crous PW, Ades PK, Nasruddin A, Mongkolporn O, Taylor PWJ. Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia. IMA Fungus. 2019;10:8. https://doi.org/10.1186/s43008-019-0001-y.
Article
PubMed
PubMed Central
Google Scholar
Jayapala N, Mallikarjunaiah NH, Puttaswamy H, Gavirangappa H, Ramachandrappa NS. Acibenzolar-S-methyl and β-amino butyric acid-induced upregulation of biochemical defense against Colletotrichum capsici infection in chilli (Capsicum annuum). Arch Phytopathol Plant Protection. 2020;53:3–4, 141-161. https://doi.org/10.1080/03235408.2020.1735138.
Article
CAS
Google Scholar
Ranathunge NP, Mongkolporn O, Ford R, Taylor PWJ. Colletotrichum truncatum Pathosystem on Capsicum spp: infection, colonization and defence mechanisms. Australasian Plant Pathol. 2012;41:463–73. https://doi.org/10.1007/s13313-012-0156-0.
Article
Google Scholar
Kazan K, Lyons R. Intervention of Phytohormone pathways by pathogen effectors. Plant Cell. 2014;26(6):2285–309. https://doi.org/10.1105/tpc.114.125419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janda M, Ruelland E. Magical mystery tour: salicylic acid signalling. Environ Exp Bot. 2015;114:117–28. https://doi.org/10.1016/j.envexpbot.2014.003.
Article
CAS
Google Scholar
Kalachova T, Puga-Freitas R, Kravets V, Soubigou-Repellin L, Balzergue S, Zachowski A, Ruelland E. The inhibition of basal phosphoinositide-dependent phospholipase C activity in Arabidopsis suspension cells by abscisic or salicylic acid acts as a signalling hub accounting for an important overlap in transcriptome remodelling induced by these hormones. Environ Exp Bot. 2016;123:37–49. https://doi.org/10.1016/j.envexbot.2015.11.003.
Article
CAS
Google Scholar
Cacas J-L, Gerbeau-Pissot P, Fromentin J, Cantrel C, Thomas D, Jeannette E, Kalachova T, Mongrand S, Simon-Plas F, Ruelland E. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Plant Cell Environ. 2017;40:585–98. https://doi.org/10.1111/pce.12771.
Article
CAS
PubMed
Google Scholar
D’Ambrosio JM, Couto D, Fabro G, Scuffi D, Lamattina L, Munnik T, Andersson MX, Álvarez ME, Zipfel C, Ana M. Laxalta AM. Phospholipase C2 affects MAMP-triggered immunity by modulating ROS production. Plant Physiol 2017;175:970–981. doi: https://doi.org/10.1104/pp.17.00173.
Kalachova T, Janda M, Šašek V, Ortmannová J. Nováková petre Dobrev IP, Kravets V, Guivarc’h a, Moura D, Burketová L, Valentová O, Ruelland E. identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Ann Bot. 2020;125:774–84. https://doi.org/10.1093/aob/mcz112.
Article
CAS
Google Scholar
Munnik T, Testerink C. Plant phospholipid signaling: "in a nutshell". J Lipid Res. 2009;50:S260–5. https://doi.org/10.1194/jlr.R800098-JLR200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano M, Yoshioka H, Ohnishi K, Hikichi Y, Kiba A. Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced Nicotiana benthamiana. J Plant Physiol. 2015;184:15–9. https://doi.org/10.1016/j.jplph.2015.06.007.
Article
CAS
PubMed
Google Scholar
Testerink C, Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot. 2011;62(7):2349–61.
Article
CAS
PubMed
Google Scholar
Hou QC, Ufer GD, Bartels D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 2016;39(5):1029–48. https://doi.org/10.1111/pce.12666.
Article
CAS
PubMed
Google Scholar
Altuzar-Molina AR, Muñoz-Sanchez JA, Vázquez-Flota FA, Monforte-González M, Racagni-Di Palma G, Hernández-Sotomayor SMT. Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiol Biochem. 2011;49(2):151–8. https://doi.org/10.1016/j.plaphy.2010.11.005.
Article
CAS
PubMed
Google Scholar
Nakano M, Nishihara M, Yoshioka H, Takahashi H, Sawasaki T, Ohnishi K, Hikichi Y, Kiba A. Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana. PLoS One. 2013;8(9):e75124.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T. Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol. 2000;123(4):1507–15.
Article
PubMed
PubMed Central
Google Scholar
Yamaguchi T, Minami E, Ueki J, Shibuya N. Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant Cell Physiol. 2005;46(4):579–87.
Article
CAS
PubMed
Google Scholar
Kaushal M, Mahuku G, Swennen R. Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields. Plants. 2020;9(2):263.
Article
CAS
PubMed Central
Google Scholar
Zhou Y, Coventry DR, Gupta VV, Fuentes D, Merchant A, Kaiser BN, Li J, Wei Y, Liu H, Wang Y, Gan S, Denton MD. The preceding root system drives the composition and function of the rhizosphere microbiome. Genome Biol. 2020;21:1–19.
Article
CAS
Google Scholar
Robin GP, Kleemann J, Neumann U, Cabre L, Dallery J-F, Lapalu N, O’Connell RJ. Subcellular localization screening of Colletotrichum higginsianum effector candidates identifies fungal proteins targeted to plant peroxisomes, golgi bodies and microtubules. Front Plant Sci. 2018;9:562. https://doi.org/10.3389/fpls.2018.00562.
Article
PubMed
PubMed Central
Google Scholar
Fang Y-L, Xia L-M, Wang P, Zhu L-H, Ye J-R, Huang L. The MAPKKK CgMck1 is required for cell wall integrity, Appressorium development, and pathogenicity in Colletotrichum gloeosporioides. Genes. 2018;9(11):543. https://doi.org/10.3390/genes9110543.
Article
CAS
PubMed Central
Google Scholar
Mogg C, Bonner C, Wang L, Schernthaner J, Smith M, Desveaux D, Subramaniam R. Genomic identification of the TOR signaling pathway as a target of the plant alkaloid antofine in the phytopathogen Fusarium graminearum. Am Soc Microbiology. 2019;10(3):e00792–19. https://doi.org/10.1128/mBio.00792-19.
Article
CAS
Google Scholar
Teixeira PJL, Colaianni N, Fitzpatrick CR, Dangl JL. Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17. https://doi.org/10.1016/j.mib.2019.08.003.
Article
CAS
PubMed
Google Scholar
Lamichhane JR, Durr C, Schwanck AA, Robin M-H, Sarthou J-P, Cellier V, Messean A, Aubertot J-N. Integrated management of damping-off diseases. A review Agronomy for Sustainable Develop 2017;37(2):25. doi: https://doi.org/10.1007/s13593-017-0417-y.
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Dhingra OD, Burton J. Basic plant pathology methods. Cleveland, Ohio: CRC press; 1995.
Google Scholar
Ko W. Chemical stimulation of sexual reproduction in Phytophthora an Pythium. Bot Bull Acad Sin. 1998;39:81–6.
CAS
Google Scholar
Gou LY, Ko WH. Two widely accesible media for growth and reproduction of phytophthora and pythium. Appl Environ Microbiol. 1993;59(7):2323–2325. doi: 0099–2240/93/072323–03$02.00/0.
Sharma M, Ghosh R, Tarafdar A, Telangre R. An efficient method for zoospore production, infection and real-time quantification of Phytophthora cajani causing Phytophthora blight disease in pigeonpea under elevated atmospheric CO2. BMC Plant Biol. 2015;15:90. https://doi.org/10.1186/s12870-015-0470-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shipton WA. Zoospore induction and release in a Pythium causing equine Phycomycosis. Trans Br Mycol Soc. 1985;84(Jan):147–55. https://doi.org/10.1016/S0007-1536(85)80228-X.
Article
Google Scholar
Kamoun S, Young M, Glascock CB, Tyler BM. Extracellular protein elicitors from Phytophthora - host-specificity and induction of resistance to bacterial and fungal Phytopathogens. Mol Plant-Microbe Interactions. 1993;6(1):15–25. https://doi.org/10.1094/MPMI-6-015.
Article
CAS
Google Scholar
Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodríguez A, Stevens R, Wilke A, Wilkening J, Edwards RA. The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008;9(1):386. https://doi.org/10.1186/1471-2105-9-386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Encyclopedia of Life (http://www.eol.org/). Accessed 10 March 2017.
Global Catalog of Microorganisms (http://gcm.wfcc.info). Accessed 22 June 2017.
Integrated Taxonomic Information System (https://www.itis.gov/). Accessed 24 May 2017.
Livemap (http://lifemap-ncbi.univ-lyon1.fr/). Accessed 6 June 2017.
Moral J, Bouhmidi K, Trapero A. Influence of fruit maturity, cultivar susceptibility, and inoculation method on infection of olive fruit by Colletotrichum acutatum. Plant Dis. 2008;92(10):1421–6. https://doi.org/10.1094/PDIS-92-10-1421.
Article
CAS
PubMed
Google Scholar
Berridge MV, Tan AS. Characterization of the cellular reduction of 3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization substrate dependence, and involvement of mitochondrial electron transport on MTT reduction. Arch Biochem Biophys 1993;303(2):474–482. doi: https://doi.org/10.1006/abbi.1993.1311.
Racagni G, Villasuso AL, Pasquare SJ, Giusto NM, Machado E. Diacylglycerol pyrophosphate inhibits the alpha-amylase secretion stimulated by gibberellic acid in barley aleurone. Physiol Plant. 2008;134:381–93. https://doi.org/10.1111/j.1399-3054.2008.01148.x.
Article
CAS
PubMed
Google Scholar
Smith PK, Kronhn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using Bicinchoninic acid. Anal Biochem. 1985;150(1):76–85.
Article
CAS
PubMed
Google Scholar
Racagni-Di Palma G, Brito-Argaez L, Hernandez-Sotomayor SMT. Phosphorylation of signaling phospholipids in Coffea arabica cells. Plant Physiol Biochem. 2002;40(11):899–906. https://doi.org/10.1016/S0981-9428(02)01450-X.
Article
CAS
Google Scholar
SOL Genomics Network database (https://www.sgn.cornell.edu/). Accessed 18 August 2017.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. https://doi.org/10.1093/molbev/mst197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2′(−delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinf Biomath. 2013;3(3):71–85.
Google Scholar
Sharma G, Shenoy BD. Colletotrichum fructicola and C. siamense are involved in chilli anthracnose in India. Archives of Phytopathology and Plant Protection. Taylor & Francis, 47(10), 2014. p. 1179–1194. doi: https://doi.org/10.1080/03235408.2013.833749.
Kim K-H, Yoon J-B, Park H-G, Park EW, Kim YH. Structural modifications and programmed cell death of chili pepper related to resistance responses to Colletotrichum gloeosporioides infection. Phytopahol: Genetics and Resist. 2004;94(12):1295–304. https://doi.org/10.1094/PHYTO.2004.94.12.1295.
Article
Google Scholar
Naton B, Hahlbrock K, Schmelzer E. Correlation of rapid cell death with metabolic changes in fungus-infected, cultured parsley cells. Plant Physiol. 1996;112:433–44. https://doi.org/10.1104/pp.112.1.433.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutherland MW. The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Pathol. 1991;39:79–93.
Article
CAS
Google Scholar
Tzeng DD, De Vay JE. Role of oxygen radicals in plant disease development. In: Andrews JH, Tomerup IC, editors. Advances in plant pathology, vol. 10. London: Academic Press; 1993. p. 1–33.
Google Scholar
Kulkarni AP, Mitra A, Chaudhuri J, Byczkowski JZ, Richards I. Hydrogen peroxide: a potent activator of dioxygenase activity of soybean lipoxygenase. Biochem Biophys Res Commun. 1990;166:417–23. https://doi.org/10.1016/0006-291x(90)91961-Q.
Article
CAS
PubMed
Google Scholar
Munnik T, Meijer HJ, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A. Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J. 2000;22(2):147–54. https://doi.org/10.1046/j.1365-313x.2000.00725.x.
Article
CAS
PubMed
Google Scholar
Zalejski C, Zhang Z, Quettier A-L, Maldiney R, Bonnet M, Brault M, Demandre C, Miginiac E, Rona J-P. Sotta B, Jeanette E. Diacylglycerol pyrophosphate is a second messenger of abscisic acid signaling in Arabidopsis thaliana suspension cells. Plant J 2005;42(2):145–152. doi:https://doi.org/10.1111/j.1365-313X.2005.02373.x.
Testerink C, Munnik T. Plant response to stress: Phosphatidic acid as a second messenger. Encyclopedia Plant Crop Sci. 2004:995–8. https://doi.org/10.1081/E-EPCS120010659.
Ruelland E, Valentova O. Editorial: lipid signaling in plant development and responses to environmental stresses. Front Plant Sci. 2016;7(324):1–3. https://doi.org/10.3389/fpls.2016.00324.
Article
Google Scholar
Meijer HJG, Arisz SA, Van Himbergen JAJ, Musgrave A, Munnik T. Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. Plant J. 2001;25(5):541–8. https://doi.org/10.1046/j.1365-313x.2001.00990.x.
Article
CAS
PubMed
Google Scholar
den Hartog M, Verhoef N, Munnik T. Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol. 2003;132(1):311–317. doi: doi.org/https://doi.org/10.1104/pp.102.017954.
Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T. Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiol. 2009;50(5):986–97. https://doi.org/10.1093/pcp/pcp051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zonia L, Munnik T. Cracking the Green Paradigm: Functional Coding of Phosphoinositide Signals in Plant Stress Responses. From: Biology of Inositol s and Phosphoinositides. Lahiri A and Biswas B (eds). Netherlands: Springer; 2006. p. 207–238.
de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T. Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J. 2004;39(1):1–12. https://doi.org/10.1111/j.1365-313X.2004.02110.x.
Article
CAS
PubMed
Google Scholar
Bargmann BO, Munnik T. The role of phospholipase D in plant stress responses. Curr Opin Plant Biol. 2006;9(5):515–22. https://doi.org/10.1016/j.pbi.2006.07.011.
Article
CAS
PubMed
Google Scholar
Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerström M. Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J. 2006;47(6):947–59. https://doi.org/10.1111/j.1365-313X.2006.02844.x.
Article
CAS
PubMed
Google Scholar
Gonorazky G, Guzzo MC, Abd-El-Haliem AM, MHAJ J, Laxalt AM. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. Molecular Plant Pathol. 2016;17:1354–63. https://doi.org/10.1111/mpp.12365.
Article
CAS
Google Scholar
Goto K, Hozumi Y, Kondo H. Diacylglycerol, phosphatidic acid, and the converting enzyme, diacylglycerol kinase, in the nucleus. Biochim Biophys Acta. 2006;1761(5–6):535–41. https://doi.org/10.1016/j.bbalip.2006.04.001.
Article
CAS
PubMed
Google Scholar
Van den Bout I, Divecha N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci. 2009;122:3837–50. https://doi.org/10.1242/jcs.056127.
Article
CAS
PubMed
Google Scholar
Dong W, Lv H, Xia G, Wang M. Does diacylglycerol serve as a signaling molecular in plants. Plant Signal Behav. 2012;7(4):472–5. https://doi.org/10.4161/psb.19644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang WD, Chen J, Zhang H, Song F. Overexpression of a rice diacylglycerol kinase gene OsBIDK1 enhances disease resistance in transgenic tobacco. Mol Cell. 2008;26(3):258–64.
Google Scholar