Klliker R, Kempf K, Malisch CS, Lüscher, Andreas. Promising options for improving performance and proanthocyanidins of the forage legume sainfoin (Onobrychis viciifolia Scop.). Euphytica. 2017;213(8):179.
Bhattarai S, Coulman B, Biligetu B. Sainfoin (Onobrychis viciifolia Scop.): renewed interest as a forage legume for western Canada. Can J Plant Sci. 2016;96(5):748–56.
Article
Google Scholar
Wilman D, Asiedu FHK. Growth, nutritive value and selection by sheep of sainfoin, red clover, lucerne and hybrid ryegrass. J Agr Sci. 1983;100(1):115–26.
Article
Google Scholar
Brinkhaus AG, Wyss U, Arrigo Y, Girard M, Bee G, Zeitz JO, Kreuzer M, Dohmemeier F. In vitro ruminal fermentation characteristics and utilisable CP supply of sainfoin and birdsfoot trefoil silages and their mixtures with other legumes. Animal. 2017;11(4):580–90.
Article
CAS
Google Scholar
Hatew B, Hayot Carbonero C, Stringano E, Sales LF, Smith LM, Muellerharvey I, Hendriks WH, Pellikaan WF. Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions. Grass Forage Sci. 2015;70(3):474–90.
Article
CAS
Google Scholar
Girard M, Dohmemeier F, Wechsler D, Goy D, Kreuzer M, Bee G. Ability of 3 tanniferous forage legumes to modify quality of milk and Gruyère-type cheese. J Dairy Sci. 2016;99(1):205–20.
Article
CAS
PubMed
Google Scholar
Richards KW, Edwards PD. Density, diversity, and efficiency of pollinators of sainfoin, Onobrychis viciaefolia Scop. Can Entomol. 1988;120(12):1085–100.
Article
Google Scholar
Kells AR. Sainfoin: an alternative forage crop for bees. Bee World. 2001;82(4):192–4.
Article
Google Scholar
Zhang YY, Zhou TH, Dai ZW, Dai XY, Li W, Cao MX, Li CR, Tsai WC, Wu XQ, Zhai JW, Liu ZJ, Wu SS. Comparative Transcriptomics provides insight into floral color polymorphism in a Pleione limprichtii orchid population. Int J Mol Sci. 2020;21(1):247.
Article
CAS
Google Scholar
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid metabolism in plants: the role of plastids. Mol Plant. 2018;11(1):58–74.
Article
PubMed
CAS
Google Scholar
Davies KM, Albert NW, Schwinn KE. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol. 2012;39(8):619.
Article
CAS
PubMed
Google Scholar
Schiest FP, Johnson SD. Pollinator-mediated evolution of floral signals. Trends Ecol Evol. 2013;28(5):307–15.
Article
Google Scholar
Hanumappa M, Choi G, Ryu S, Choi G. Modulation of flower colour by rationally designed dominant-negative chalcone synthase. J Exp Bot. 2007;58(10):2471–8.
Article
CAS
PubMed
Google Scholar
Duan HR, Wang LR, Cui GX, Zhou XH, Duan XR, Yang HS. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biol. 2020;20(1):1–17.
Article
CAS
Google Scholar
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54(4):733–49.
Article
CAS
PubMed
Google Scholar
Tripathi AM, Niranjan A, Roya S. Global gene expression and pigment analysis of two contrasting flower color cultivars of canna. Plant Physiol Bioch. 2018;27:1–10.
Article
CAS
Google Scholar
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol. 2006;57(1):761–80.
Article
CAS
PubMed
Google Scholar
Li X, Wang J, Zhao J, Zheng Y, Wang HF, Wu X, Xian C, Lei JJ, Zhong CF, Zhang YT. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. BMC Plant Biol. 2019;19(1):1–16.
Google Scholar
Li Y, Ma R. M YJ, Zhang F, Duan HR, Yang HS, Tian FP, Zhou XH, Wang CM. Transcriptomic analysis of Lycium ruthenicum Murr. During fruit ripening provides insight into structural and regulatory genes in the anthocyanin biosynthetic pathway. PLoS One. 2018;13(12):1–12.
Google Scholar
Holton Timothy A, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell. 1995;7(7):1071–83.
Article
Google Scholar
Li L, Zhai YB, Luo XB, Zhang YC, Shi QB. Comparative transcriptome analyses reveal genes related to pigmentation in the petals of red and white Primula vulgaris cultivars. Physiol Mol Biol Pla. 2019;25(4):1029–41.
Article
CAS
Google Scholar
Zhang H, Tian H, Chen M, Xiong J, Cai H, Liu Y. Transcriptome analysis reveals potential genes involved in flower pigmentation in a red-flowered mutant of white clover (Trifolium repens L.). Genomics. 2018;110(3):191–200.
Article
CAS
PubMed
Google Scholar
Li X, Liu S, Yuan G, Zhao P, Yang W, Jia J, Cheng L, Qi D, Chen S, Liu G. Comparative transcriptome analysis provides insights into the distinct germination in sheepgrass (Leymus chinensis) during seed development. Plant Physiol Bioch. 2019;139:446–58.
Article
CAS
Google Scholar
Xie WG, Zhang JC, Zhao XH, Zhang ZY, Wang YR. Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biol. 2017;17(1):78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang B, Rong H, Ye YJ, Ni ZX, Xu M, Zhang WX, Xu LA. Transcriptomic analysis of flower color variation in the ornamental crabapple (Malus spp.) half-sib family through Illumina and PacBio sequel sequencing. Plant Physiol Bioch. 2020;149:27–35.
Article
CAS
Google Scholar
Lu C, Pu Y, Liu Y, Li Y, Qu J, Huang H, Dai S. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium. Plant Physiol Bioch. 2019;142:415–28.
Article
CAS
Google Scholar
Hiroyasu Y. Mutation breeding of ornamental plants using ion beams. Breeding Sci. 2018;68(1):71–8.
Article
CAS
Google Scholar
Akhtar S, Sikder S, Biswas P, Hazra P, D'Souza SF. Induction of mutation in tomato (Solanum Lycopersicum L.) by gamma irradiation and EMS. Indian J Genet Plant Breed. 2013;73(4):392–9.
Article
Google Scholar
Shah SNM, Gong ZH, Arisha MH, Khan A, Tian SL. Effect of ethyl methyl sulfonate concentration and different treatment conditions on germination and seedling growth of the cucumber cultivar chinese long (9930). Genet Mol Res. 2015;14(1):2440–9.
Article
CAS
PubMed
Google Scholar
Awais A, Nualsri C, Soonsuwon W. Induced mutagenesis for creating variability in Thailand's upland Rice (cv. Dawk pa-yawm and Dawk Kha 50) using ethyl methane Sulphonate (EMS). Sarhad J Agr. 2019;35(1):293–301.
Google Scholar
Amin R, Wani MR, Raina A, Khursheed S, Khan S. Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane Sulfonate. Jordan J Bio Sci. 2019;12(1):23–30.
CAS
Google Scholar
Malisch C, Luscher A, Baert N, Engstrom MT, Studer B, Fryganas C, Suter D, Mueller-Harvey I, Salminen J. Large variability of proanthocyanidin content and composition in sainfoin (Onobrychis viciifolia). J Agr Food Chem. 2015;63(47):10234–42.
Article
CAS
Google Scholar
Nigel CV, Ionela R, Geoffrey CK, Dieter T. Acylated flavonol glycosides from the forage legume, Onobrychis viciifolia (sainfoin). Phytochemistry. 2011;72(4–5):423–9.
Google Scholar
Regos I, Urbanella A, Treutter D. Identification and quantification of phenolic compounds from the forage legume Sainfoin (Onobrychis viciifolia). J Agr Food Chem. 2009;57(13):5843–52.
Article
CAS
Google Scholar
Li LA, Zhai YB, Luo XB, Zhang YC, Shi QB. Comparative transcriptome analyses reveal genes related to pigmentation in the petals of red and white Primula vulgaris cultivars. Physiol Mol Biol Pla. 2019;25(4):1029–41.
Article
CAS
Google Scholar
Li X, Wang J, Zhao J, Zheng Y, Zhang YT. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. BMC Plant Biol. 2019;19(1).
Guo L, Wang Y, Silva JA, Fan Y, Yu X. Transcriptome and chemical analysis reveal putative genes involved in flower color change in Paeonia ‘coral sunset’. PPB. 2019;138:130–9.
CAS
PubMed
Google Scholar
Lou Q, Liu YL, Qi YY, Jiao SZ, Tian FF, Jiang L, Wang YJ. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot. 2014;65(12):3157–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, Yuan HH, Sun XB. Preliminary studies on the changes of flower color during the flowering period in two tree peony cultivars. Acta Hortic Sin. 2015;42 (5).
Zhong PX, Wang LS, Li SS, Xu YJ, Zhu ML. The changes of floral color and pigments composition during the flowering period inpallas. Acta Horticulturae Sinica. 2012;11.
Han FL, Zhang WN, Pan QH, Zheng CR, Chen HY, Duan CQ. Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young cabernet sauvignon wines. Molecules. 2008;13(11):2859–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Bioch. 2013;72(1):1–20.
Article
CAS
Google Scholar
Hao ZD, Liu SQ, Hu LF, S JS, Chen JH. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera. Horticulture Research.2020;70(1).
Zhou Y, Wu XX, Zhang Z. Comparative proteomic analysis of floral color variegation in peach. Biochem Bioph Res Co. 2015;464(4):1101–6.
Article
CAS
Google Scholar
Wang YL, Wang YQ, Song ZQ. Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis. Mol Plant. 2016;9(10):1395–405.
Article
CAS
PubMed
Google Scholar
Douglas CJ. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci. 1996;1(6):171–8.
Article
Google Scholar
Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E. Characterization of Phenylpropene O-Methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell. 2002;14(2):505–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cukovic D, Ehlting J, VanZiffle JA, Douglas CJ. Structure and evolution of 4-Coumarate: coenzyme a ligase (4CL) gene families. Biol Chem. 2005;382(4):645–54.
Google Scholar
Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E. Three 4-coumarate: coenzyme a ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J. 1999;19(1):9–20.
Article
CAS
PubMed
Google Scholar
Zhao DQ, Tao J. Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci. 2015;6:261.
Article
PubMed
PubMed Central
Google Scholar
Nakatsuka T, Nishihara MM, Mishiba K, Yamamura S. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci. 2005;168(5):1309–18.
Article
CAS
Google Scholar
Fang ZW, Hou ZH, Wang SP, Liu ZX, Wei SD, Zhang YX, Song JH, Yin JL. Transcriptome Analysis Reveals the Accumulation Mechanism of Anthocyanins in Buckwheat (Fagopyrum esculentum Moench.) Cotyledons and Flowers. Int J Mol Sci. 2019;20(6):1493.
Achilonu CC, Maleka FM. Characterization and Expression Analyses of Chalcone Synthase (CHS) and Anthocyanidin Synthase (ANS) Genes in Clivia miniata. OMICS Publishing Group. 2016;4(2).
Katsumoto Y, Fukuchimizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekurasakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating Delphinidin. Plant & Cell Physiology. 2007;48(11):1589–600.
Article
CAS
Google Scholar
Spitzer B, Zvi MM, Ovadis M, Marhevka E, Barkai O, Edelbaum O, Marton I, Masci T, Alon M, Morin S, Rogachev I, Aharoni A, Vainstein A. Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in Petunia. Plant Physiol. 2007;145(4):1241–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cynthia AD, Jason B, Timothy B, Matthew LC, Daniel JK, Justen BW. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway. PLoS One. 2011;16(4):1–10.
Google Scholar
Wu YQ, Zhu MY, Jiang Y. Molecular characterization of chalcone isomerase (CHI) regulating flower color in herbaceous peony (Paeonia lactiflora pall.). J Integr Agr. 2018;17(1):122–9.
Article
CAS
Google Scholar
Van Tunen AJ, Koes RE, Spelt CE, Van DKAR, Stuitje AR, Mol JN. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J. 1988;7(5):1257–63.
Article
PubMed
PubMed Central
Google Scholar
Kim S, Jones R, Yoo KS, Pike LM. Gold color in onions (Allium cepa): a natural mutation of the chalcone isomerase gene resulting in a premature stop codon. Mol Gen Genomics. 2004;272(4):411–9.
Article
CAS
Google Scholar
Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric DVCH, Van Tunen AJ, Verhoeyen ME. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol. 2001;19(5):470–4.
Article
CAS
PubMed
Google Scholar
Masami M, Takashi O, Yoshihiro O, Daisuke H, Yoshio I, Tamotsu H, Hiroyuki Y, Michio S. Flavonoid Biosynthesis in Pink-flowered Cultivars Derived from 'William Sim' Carnation (Dianthus caryophyllus). J Jpn Soc Hortic Sci. 2001;70 (3).
Chen SM, Li CH, Zhu XR, Deng YM, Sun W, Wang LS, Chen FD, Zhang Z. The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biol Plantarum. 2012;56(3):458–64.
Article
CAS
Google Scholar
Stich K, Eidenberger T, Wurst F, Forkmann G. Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta. 1992;187(1):103–8.
Article
CAS
PubMed
Google Scholar
Feyissa DN, Lvdal T, Olsen KM, Slimestad R, Lillo C. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta. 2009;230(4):747–54.
Article
CAS
PubMed
Google Scholar
Zhu Q, Sui S, Lei X, Yang Z, Lu K, Liu G, Liu YG, Li M, Han Y. Ectopic expression of the Coleus R2R3 MYB-type Proanthocyanidin regulator gene SsMYB3 alters the flower color in transgenic tobacco. PLoS One. 2015;10(10):e139392.
Article
Google Scholar
Han YP, Vimolmangkang S, Soria-Guerra R E, Korban S S. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. J Exp Bot. 2012;(7):2437–2447.
Sverine G, Soizic L, Olivier C, Laurence G. Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-sauvignon during development. Plant Physiol Bioch. 2009;47(4):282–90.
Article
CAS
Google Scholar
Wang PQ, Liu YJ, Zhang LJ, Wang WZ, Hou H, Zhao Y, Jiang XL, Yu J, Tan HR, Wang YS, Xie DY, Gao LP, Xia T. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins. Plant J. 2020;101(1):18–36.
Article
CAS
PubMed
Google Scholar
Xie DY, Sharma B, Paiva NL, Ferreira D, Dixon RA. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science (New York, N.Y.). 2003;299(5605):396–399.
Zhang YY, Zhou TH, Dai ZW, Dai XY, Wei L, Cao MX, Li CR, Tsai WC, Wu XQ, Zhai JW, Liu ZJ, Wu SS. Comparative Transcriptomics provides insight into floral color polymorphism in a Pleione limprichtii orchid population. Int J Mol Sci. 2020;21(N1):247.
Article
CAS
Google Scholar
Cui HL, Zhang YN, Shi XL, Gong FF, Xiong X, Kang XP, Xing GM, Li S. The numerical classification and grading standards of daylily (Hemerocallis) flower color. PLoS One. 2019;14(6):1–16.
Article
CAS
Google Scholar
Grabherr M, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Xian A, Lin F, Raktima R, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng QM, Bai SQ, Ge GT, Li P, Liu LY, Zhang CD, Jia YS. Study on differentially expressed genes related to defoliation traits in two alfalfa varieties based on RNA-Seq. BMC Genomics. 2018;19(1):1–8.
Article
CAS
Google Scholar
Chen JJ, Duan YJ, Hu YL, Li WM, Sun DQ, Hu HG, Xie JH. Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest. BMC Plant Biology. 2019;19(1).
Wang JJ, Zhao Y, Ray I, Song MZ. Transcriptome responses in alfalfa associated with tolerance to intensive animal grazing. Scientific reports.2016;6(1):19438.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402.
Article
CAS
PubMed
Google Scholar