Huerta-Espino J, Singh RP, German S, McCallum BD, Park RF, Chen WQ, Bhardwaj SC, Goyeau H. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica. 2011;179:143–60.
Article
Google Scholar
Chen XM. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol. 2005;27:314–37.
Article
Google Scholar
Hovmøller MS, Walter S, Bayles RA, et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2016;65:402–11.
Article
Google Scholar
Liu T, Wan A, Liu D, Chen X. Changes of races and virulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, in the United States from 1968 to 2009. Plant Dis. 2017;101:1522–32.
Article
CAS
PubMed
Google Scholar
Lyon B, Broders K. Impact of climate change and race evolution on the epidemiology and ecology of stripe rust in central and eastern USA and Canada. Can J Plant Pathol. 2017;39:385–92.
Article
Google Scholar
Chhuneja P, Kaur S, Dhaliwal HS. Introgression and exploitation of biotic stress tolerance from related wild species in wheat cultivars. In: Rajpal VR, Rao SR, Raina SN, editors. Molecular breeding for sustainable crop improvement, vol 2. Switzerland: Springer International Publishing; 2016. p. 269–24.
Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017;57:1070–82.
Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN. The past, present and future of breeding rust resistant wheat. Front Plant Sci. 2014;5:641.
Article
PubMed
PubMed Central
Google Scholar
McIntosh RA, Dubcovsky J, Rogers JW, Morris CF, Appels R, Xia XC. Catalogue of gene symbols for wheat: 2011 supplement. Annual wheat newsletter; 2010. p. 57.
Google Scholar
Gu L, Si W, Zhao L, Yang S, Zhang X. Dynamic evolution of NBS–LRR genes in bread wheat and its progenitors. Mol Genet Genomics. 2015;290:727–38.
Article
CAS
PubMed
Google Scholar
Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JD, Lagudah ES. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol. 2016;34:652.
Article
CAS
PubMed
Google Scholar
Olivera PD, Kolmer JA, Anikster Y, Steffenson BJ. Resistance of Sharon Goatgrass (Aegilops sharonensis) to fungal diseases of wheat. Plant Dis. 2007;91:942–50.
Article
CAS
PubMed
Google Scholar
Olivera PD, Steffenson BJ. Aegilops sharonensis: origin, genetics, diversity, and potential for wheat improvement. Botany. 2009;87:740–56.
Article
CAS
Google Scholar
Millet E, Steffenson BJ, Prins R, Sela H, Przewieslik-Allen AM, Pretorius ZA. Genome targeted introgression of resistance to African stem rust from Aegilops sharonensis into bread wheat. Plant Genome. 2017;10. https://doi.org/10.3835/plantgenome2017.07.0061.
Wulff BB, Moscou MJ. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci. 2014;5:692.
Article
PubMed
PubMed Central
Google Scholar
Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature. 1958;182:713–5.
Article
Google Scholar
Sears ER, Okamoto M. Intergenomic chromosome relationships in hexaploid wheat. Proc Xth Internat Congr Genet Montreal. 1958;2:258–9.
Google Scholar
Sears ER. A wheat mutation conditioning an intermediate level of homoeologous chromosome pairing. Can J Genet Cytol. 1982;24:715–9.
Article
Google Scholar
Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Ozkan H. Aegilops. In: Kole C, editor. Wild crop relatives: genomic and breeding resources, cereals. Berlin: Springer; 2011. p. 1–76.
Google Scholar
Kwiatek MT, Kurasiak-Popowska D, Mikołajczyk S, Niemann J, Tomkowiak A, Weigt D, Nawracała J. Cytological markers used for identification and transfer of Aegilops spp. chromatin carrying valuable genes into cultivated forms of Triticum. Comp Cytogen. 2019;13:41–59.
Article
Google Scholar
Keilwagen J, Lehnert H, Berner T, Beier S, Scholz U, Himmelbach A, Stein N, Badaeva ED, Lang D, Kilian B, Hackauf B. Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front Plant Sci. 2019;10:1133.
Article
PubMed
PubMed Central
Google Scholar
Marais GF, Badenhorst PE, Eksteen A, Pretorius ZA. Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica. 2010;171:15–22.
Article
CAS
Google Scholar
Millet E, Manisterski J, Ben-Yehuda P, Distelfeld A, Deek J, Wan A, Chen X, Steffenson BJ. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). Genome. 2014;57:1–8.
Article
CAS
Google Scholar
Olivera PD, Kilian A, Wenzl P, Steffenson BJ. Development of a genetic linkage map for Sharon goatgrass (Aegilops sharonensis) and mapping of a leaf rust resistance gene. Genome. 2013;56:367–76.
Article
CAS
PubMed
Google Scholar
Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Jordan KW, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–7.
Article
CAS
PubMed
Google Scholar
Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S. Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot. 2017;121:603–16.
Article
PubMed Central
CAS
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
Article
CAS
PubMed
PubMed Central
Google Scholar
He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. 2014;5:484.
Article
PubMed
PubMed Central
Google Scholar
Qureshi N, Bariana H, Forrest K, Hayden M, Keller B, Wicker T, Faris J, Salina E, Bansal U. Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat. Theor Appl Genet. 2017;130:495–504.
Article
CAS
PubMed
Google Scholar
Rasheed A, Xia X. From markers to genome-based breeding in wheat. Theor Appl Genet. 2019;132:767–84.
Article
CAS
PubMed
Google Scholar
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, Ronen G. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191.
Article
CAS
Google Scholar
Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S. Major genes determining yield-related traits in wheat and barley. Theor Appl Genet. 2017;130:1081–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reference A: IWGSC RefSeq v1.0 Database. https://wheat-urgi.versailles.inra.fr/Seq-Repository. Accessed 2 Sept 2016.
McIntosh RA. Alien sources of disease resistance in bread wheats. In: Sasakuma T, Kinoshita T, editors. Proc. of Dr. H. Kihara Memorial Int. Symp. on cytoplasmic engineering in wheat. Nuclear and organellar genomes of wheat species. Yokohama: Yokohama Foundation for the Advacement of Life Science; 1991. p. 320–32.
Niu Z, Klindworth DL, Yu G, et al. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet. 2014;127:969–80.
Article
CAS
PubMed
Google Scholar
Zhang P, Dundas IS, Xu SS, Friebe B, McIntosh RA, Raupp WJ. Chromosome engineering techniques for targeted introgression of rust resistance from wild wheat relatives. In: Periyannan S, editor. Wheat rust diseases, methods and protocols. : Springer, Switzerland; 2017a. p. 163–172.
Chapter
Google Scholar
Zhang W, Cao Y, Zhang M, et al. Meiotic homoeologous recombination-based alien gene introgression in the genomics era of wheat. Crop Sci. 2017b;57:1189–98.
Article
CAS
Google Scholar
Caldwell RM, Compton LE. Complementary lethal genes in wheat causing a progressive lethal necrosis of seedlings. J Hered. 1943;34:66–70.
Article
Google Scholar
Hermsen JGT. Sources and distribution of the complementary genes for hybrid necrosis in wheat. Euphytica. 1963;12:147–60.
Article
Google Scholar
Liu X, Guo L, You J, et al. Progress of segregation distortion in genetic mapping of plants. Res J Agron. 2010;4:78–83.
Article
Google Scholar
Wingen LU, West C, Leverington-Waite M, et al. Wheat landrace genome diversity. Genetics. 2017;205:1657–76.
Article
PubMed
PubMed Central
Google Scholar
Sears ER, Loegering WQ. A pollen-killing gene in wheat. Genetics. 1961;46:897.
Google Scholar
Tsujimoto H. Two new sources of gametocidal genes from Aegilops longissima and Ae. sharonensis. Wheat Inf Serv. 1994;79:42–6.
Google Scholar
Marais GF, McCallum B, Marais AS. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica. 2006;149:373–80.
Article
Google Scholar
Loegering WQ, Sears ER. Distorted segregation of stem rust resistance of Timstein wheat caused by a pollen-killing gene. Can J Genet Cytol. 1963;5:65–72.
Article
Google Scholar
McIntosh RA, Wellings CR, Park RF. Wheat rusts: an atlas of resistance genes. Australia: CSIRO Publishing; 1995.
Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974;14:415–21.
Qu LJ, Foote TN, Roberts MA, Money TA, Aragon-Alcaide L, Snape JW, Moore G. A simple PCR-based method for scoring the ph1b deletion in wheat. Theor Appl Genet. 1998;96:371–5.
Ayyadevara S, Thaden JJ, Reis RJS. Discrimination of primer 3′-nucleotide mismatch by Taq DNA polymerase during polymerase chain reaction. Anal Biochem. 2000;284:11–8.
Article
CAS
PubMed
Google Scholar
Reference B: GrainGenes. https://wheat.pw.usda.gov/ITMI/Repeats/blastrepeats3.html. Accessed 2 Sept 2016.
Herten K, Hestand MS, Vermeesch JR, Van Houdt JK. GBSX: a toolkit for experimental design and demultiplexing genotyping by sequencing experiments. BMC Bioinformatics. 2015;16:73.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
CAS
PubMed
PubMed Central
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reference C: Bcftools. https://samtools.github.io/bcftools/. Accessed 3 Sept 2016.
Obenchain V, Lawrence M, Carey V, Gogarten S, Shannon P, Morgan M. VariantAnnotation: a bioconductor package for exploration and annotation of genetic variants. Bioinformatics. 2014;30:2076–8.