Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, et al. Phosphorus dynamics: from soil to plant. Plant Physiol. 2011;156:997–1005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003;157:423–47.
Article
CAS
Google Scholar
Li Y, Wang T, Li J, Ao Y. Effect of phosphorus on celery growth and nutrient uptake under different calcium and magnesium levels in substrate culture. Hortic Sci. 2010;37:99–108.
Article
Google Scholar
Barłóg P, Grzebisz W, Feć M, Łukowiak R, Szczepaniak W. Row method of sugar beet (Beta vulgaris L.) fertilization with multicomponent fertilizer based on urea-ammonium nitrate solution as a way to increase nitrogen efficiency. J Cent Eur Agric. 2010;11:225–34.
Google Scholar
Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci. 2010;4:330–4.
CAS
Google Scholar
Zhang X, Liu F, He Y, Gong X. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst Eng. 2013;115:56–65.
Article
Google Scholar
Choi JM, Lee CW. Influence of elevated phosphorus levels in nutrient solution on micronutrient uptake and deficiency symptom development in strawberry cultured with fertigation system. J Plant Nutr. 2012;35:1349–58.
Article
CAS
Google Scholar
Viégas I de JM, Cordeiro RAM, Almeida GM de, Silva DAS, Silva BC da, Okumura RS, et al. Growth and visual symptoms of nutrients deficiency in Mangosteens (Garcinia mangostana L.) Am J Plant Sci 2018;9:1014–1028.
Osborne SL, Schepers JS, Francis DD, Schlemmer MR. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron J. 2002;94:1215.
Article
Google Scholar
Ticconi CA, Abel S. Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci. 2004;9:548–55.
Article
CAS
PubMed
Google Scholar
Dunn BL, Singh H, Payton M, Kincheloe S. Effects of nitrogen, phosphorus, and potassium on SPAD-502 and atLEAF sensor readings of salvia. J Plant Nutr. 2018;41:1674–83.
Article
CAS
Google Scholar
Yaryura P, Cordon G, Leon M, Kerber N, Pucheu N, Rubio G, et al. Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.). J Agron Crop Sci. 2009;195:186–96.
Article
CAS
Google Scholar
Li G, Wang C, Feng M, Yang W, Li F, Feng R. Hyperspectral prediction of leaf area index of winter wheat in irrigated and rainfed fields. Plos One. 2017;12:e0183338.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu W, Li J, Zhang Z, Ling C, Lin X, Chang X. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image. Trans Chin Soc Agric Eng. 2018;34:195–201.
Google Scholar
Guo T, Tan C, Li Q, Cui G, Li H. Estimating leaf chlorophyll content in tobacco based on various canopy hyperspectral parameters. J Ambient Intell Humaniz Comput. 2019;10:3239–47.
Article
Google Scholar
Ling B, Goodin DG, Raynor EJ, Joern A. Hyperspectral analysis of leaf pigments and nutritional elements in tallgrass prairie vegetation. Front Plant Sci. 2019;10:142.
Article
PubMed
PubMed Central
Google Scholar
Szuvandzsiev P, Helyes L, Lugasi A, Szántó C, Baranowski P, Pék Z. Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld portable spectrometer. Int Agrophysics. 2014;28:521–7.
Article
Google Scholar
Wang Y, Hu X, Jin G, Hou Z, Ning J, Zhang Z. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging. J Sci Food Agric. 2019;99:1997–2004.
Article
CAS
PubMed
Google Scholar
Sytar O, Zivcak M, Neugart S, Brestic M. Assessment of hyperspectral indicators related to the content of phenolic compounds and multispectral fluorescence records in chicory leaves exposed to various light environments. Plant Physiol Biochem. 2020;154:429–38.
Article
CAS
PubMed
Google Scholar
Zhao YR, Li X, Yu KQ, Cheng F, He Y. Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease. Sci Rep. 2016;6:27790.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sytar O, Brϋckovά K, Kovar M, Živčák M, Hemmerich I, Brestič M. Nondestructive detection and biochemical quantification of buckwheat leaves using visible (VIS) and near-infrared (NIR) hyperspectral reflectance imaging. J Cent Eur Agric. 2017;18:864–78.
Article
Google Scholar
Wang C, Nie S, Xi X, Luo S, Sun X. Estimating the biomass of maize with hyperspectral and LiDAR data. Remote Sens. 2017;9:11.
Article
Google Scholar
Adam E, Deng H, Odindi J, Abdel-Rahman EM, Mutanga O. Detecting the early stage of Phaeosphaeria leaf spot infestations in maize crop using in situ hyperspectral data and guided regularized random Forest algorithm. J Spectrosc. 2017;6961387:1–8.
CAS
Google Scholar
Baranowski P, Jedryczka M, Mazurek W, Babula-Skowronska D, Siedliska A, Kaczmarek J. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria. Plos One. 2015;10:e0122913.
Article
PubMed
PubMed Central
CAS
Google Scholar
Navrozidis I, Alexandridis TK, Dimitrakos A, Lagopodi AL, Moshou D, Zalidis G. Identification of purple spot disease on asparagus crops across spatial and spectral scales. Comput Electron Agric. 2018;148:322–9.
Article
Google Scholar
Siedliska A, Baranowski P, Zubik M, Mazurek W, Sosnowska B. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging. Postharvest Biol Technol. 2018;139:115–26.
Article
CAS
Google Scholar
Kovar M, Brestic M, Sytar O, Barek V, Hauptvogel P, Zivcak M. Evaluation of hyperspectral reflectance parameters to assess the leaf water content in soybean. Water. 2019;11:443.
Article
CAS
Google Scholar
Surase RR, Kale KV, Varpe AB, Vibhute AD, Gite HR, Solankar MM, et al. Estimation of water contents from vegetation using hyperspectral indices. In: Panda G, Satapathy SC, Biswal B, Bansal R, editors. Microelectronics, Electromagnetics and Telecommunications. Singapore: Springer; 2019. p. 247–55.
Chapter
Google Scholar
Liang L, Qin Z, Zhao S, Di L, Zhang C, Deng M, et al. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int J Remote Sens. 2016;37:2923–49.
Article
Google Scholar
Feng H, Chen G, Xiong L, Liu Q, Yang W. Accurate digitization of the chlorophyll distribution of individual rice leaves using hyperspectral imaging and an integrated image analysis pipeline. Front Plant Sci. 2017;8:1238.
Article
PubMed
PubMed Central
Google Scholar
Corti M, Marino Gallina P, Cavalli D, Cabassi G. Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content. Biosyst Eng. 2017;158:38–50.
Article
Google Scholar
Wang Y, Hu X, Hou Z, Ning J, Zhang Z. Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imaging. J Sci Food Agric. 2018;98:4659–64.
Article
CAS
PubMed
Google Scholar
Lu J, Yang T, Su X, Qi H, Yao X, Cheng T, et al. Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precis Agric. 2020;21:324–48.
Article
Google Scholar
Li D, Wang C, Jiang H, Peng Z, Yang J, Su Y, et al. Monitoring litchi canopy foliar phosphorus content using hyperspectral data. Comput Electron Agric. 2018;154:176–86.
Article
Google Scholar
Liu Y, Lyu Q, He S, Yi S, Liu X, Xie R, et al. Prediction of nitrogen and phosphorus contents in citrus leaves based on hyperspectral imaging. Int J Agric Biol Eng. 2015;8:80–8.
Google Scholar
Mahajan GR, Pandey RN, Sahoo RN, Gupta VK, Datta SC, Kumar D. Monitoring nitrogen, phosphorus and Sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precis Agric. 2017;18:736–61.
Article
Google Scholar
Ansari MS, Young KR, Nicolas ME. Determining wavelength for nitrogen and phosphorus nutrients through hyperspectral remote sensing in wheat (Triticum aestivum L.) plant. Int J Bio-Resour Stress Manag. 2016;7:653–62.
Google Scholar
Li L, Wang S, Ren T, Wei Q, Ming J, Li J, et al. Ability of models with effective wavelengths to monitor nitrogen and phosphorus status of winter oilseed rape leaves using in situ canopy spectroscopy. Field Crops Res. 2018;215:173–86.
Article
Google Scholar
Christensen LK, Bennedsen BS, Jørgensen RN, Nielsen H. Modelling nitrogen and phosphorus content at early growth stages in spring barley using hyperspectral line scanning. Biosyst Eng. 2004;88:19–24.
Article
Google Scholar
Mahajan GR, Sahoo RN, Pandey RN, Gupta VK, Kumar D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, Sulphur and potassium in wheat (Triticum aestivum L.). Precis Agric. 2014;15:499–522.
Article
Google Scholar
Backhaus A, Bollenbeck F, Seiffert U. Robust classification of the nutrition state in crop plants by hyperspectral imaging and artificial neural networks. In: 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS); 2011. p. 1–4.
Google Scholar
Sun Y, Gao J, Wang K, Shen Z, Chen L. Utilization of machine vision to monitor the dynamic responses of rice leaf morphology and colour to nitrogen, phosphorus, and potassium deficiencies. J Spectrosc. 2018;1469314:1–13.
CAS
Google Scholar
Trejo-Téllez LI, Gómez-Merino F. Nutrient management in strawberry. Effects on yield, quality and plant health. In: Strawberries: Cultivation, Antioxidant Properties and Health Benefits. Nova Science Publishers, Nathan Malone (Ed.); 2014. p. 239–67.
Estrada-Ortiz E, Trejo-Téllez LI, Gómez-Merino FC, Nuñez-Escobar R, Sandoval-Villa M. Biochemical responses in strawberry plants supplying phosphorus in the form of phosphite. Rev Chapingo Ser Hortic. 2011;17:129–38.
Article
Google Scholar
Costa R, Calvete E, Schons J, Reginatto F. Chlorophyll content in strawberry leaves produced under shading screens in greenhouse. Acta Hortic. 2012;926:321–4.
Article
Google Scholar
Ebrahimi R, Ebrahimi F, Ahmadizadeh M. Effect of different substrates on herbaceous pigments and chlorophyll amount of strawberry in hydroponic cultivation system. Am Eurasian J Agric Environ Sci. 2012;12:154–8.
Google Scholar
Choi HG, Moon BY, Kang NJ. Correlation between strawberry (Fragaria ananassa Duch.) productivity and photosynthesis-related parameters under various growth conditions. Front Plant Sci. 2016;7:1607.
Article
PubMed
PubMed Central
Google Scholar
Kaya C, Akram NA, Ashraf M. Influence of exogenously applied nitric oxide on strawberry (Fragaria × ananassa) plants grown under iron deficiency and/or saline stress. Physiol Plant. 2019;165:247–63.
Porcar-Castell A, Tyystjärvi E, Atherton J, Tol C, Flexas J, Pfündel E, et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot. 2014;65:4065–95.
Article
CAS
PubMed
Google Scholar
Streit N, Canterle L, Canto M, Hecktheuer L. The chlorophylls. Cienc Rural. 2015;35:748–55.
Article
Google Scholar
Pacumbaba RO, Beyl CA. Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient deficiencies. Adv Space Res. 2011;48:32–42.
Article
CAS
Google Scholar
Spiers JM, Braswell JH. Influence of N, P, K, Ca, and Mg rates on leaf macronutrient concentration of “Navaho” blackberry. Acta Hortic. 2002;585:659–63.
Article
CAS
Google Scholar
Chang SX. Seedling sweetgum (Liquidambar styraciflua L.) half-sib family response to N and P fertilization: growth, leaf area, net photosynthesis and nutrient uptake. For Ecol Manag. 2003;173:281–91.
Article
Google Scholar
Dordas C. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source–sink relations. Eur J Agron. 2009;30:129–39.
Article
CAS
Google Scholar
Finkner RE, Grimes DW, Herron GM. Effect of plant spacing and fertilizer on yield, purity, chemical constituents and evapotranspiration of sugar beets in Kansas. II Chemical constituents. J Sugarbeet Res. 1964;12:699–714.
Article
Google Scholar
Feret J-B, François C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, et al. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ. 2008;112:3030–43.
Article
Google Scholar
Zhai Y, Cui L, Zhou X, Gao Y, Fei T, Gao W. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: comparison of partial least-square regression and support vector machine regression methods. Int J Remote Sens. 2013;34:2502–18.
Article
Google Scholar
Knox NM, Skidmore AK, Prins HHT, Heitkönig IMA, Slotow R, van der Waal C, et al. Remote sensing of forage nutrients: combining ecological and spectral absorption feature data. ISPRS J Photogramm Remote Sens. 2012;72:27–35.
Article
Google Scholar
Baranowski P, Mazurek W, Pastuszka-Woźniak J. Supervised classification of bruised apples with respect to the time after bruising on the basis of hyperspectral imaging data. Postharvest Biol Technol. 2013;86:249–58.
Article
Google Scholar
Vos J. Input and offtake of nitrogen, phosphorus and potassium in cropping systems with potato as a main crop and sugar beet and spring wheat as subsidiary crops. Eur J Agron. 1996;5:105–14.
Article
Google Scholar
Biczak R, Herman B, Rychter P. Effects of nitrogen, phosphorus and potassium fertilization on yield and biological value of leaf celery. Part I: vegetables yield and mineral composition. Proc ECOpole. 2011;5:161–71.
Google Scholar
Das AK, Singh B, Sahoo RK. Correlation and path analysis in strawberry (Fragaria ananassa Duch). Indian J Hortic. 2006;63:83–5.
Google Scholar
Ghaly F, Abd-Hady M, Abd-Elhamied A. Effect of varieties, phosphorus and boron fertilization on sugar beet yield and its quality. J Soil Sci Agric Eng. 2019;10:115–22.
Google Scholar
Feller C, Bleiholder H, Buhr L, Hack H, Hess M, Klose R, et al. Phanologische Entwicklungsstadien von Gemusepflanzen II. Fruchtgemuse und Hulsenfruchte. Nachr Dtsch Pflanzenschutzd. 1995;47:217–32.
Google Scholar
Meier U, Graf H, Hack H, Hess M, Kennel W, Klose R, et al. Phanologische Entwicklungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria x ananassa Duch.). Nachr Dtsch Pflanzenschutzd. 1994;46:141–53.
Ravikanth L, Jayas DS, White NDG, Fields PG, Sun D-W. Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products. Food Bioprocess Technol. 2017;10:1–33.
Article
CAS
Google Scholar
Ozcift A, Gulten A. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput Methods Prog Biomed. 2011;104:443–51.
Article
Google Scholar
Witten IH, Frank E. Data mining: practical machine learning tools and techniques, second edition. Amsterdam. Boston: Morgan Kaufmann; 2005.
Google Scholar
Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol. 1987;148:350–82.
Jackson ML. Soil chemical analysis: advanced course. 2nd ed. Madison: Parallel Press, University of Wisconsin-Madison Libraries; 2005.