Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. Peg biology: deciphering the molecular regulations involved during peanut peg development. Front Plant Sci. 2019. https://doi.org/10.3389/fpls.2019.01289.
Feng QL, Stalker HT, Pattee HE, Isleib TG. Arachis hypogaea plant recovery through in vitro culture of peg tips1. Peanut Science. 1995;22:129–35.
Article
CAS
Google Scholar
Luz LND, Santos RCD, Filho PAM. Correlations and path analysis of peanut traits associated with the peg. Crop Breed Appl Biot. 2011;11:88–95.
Article
Google Scholar
Xia H, Zhao C, Hou L, Li A, Zhao S, Bi Y, An J, Zhao Y, Wan S, Wang X. Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics. 2013. https://doi.org/10.1186/1471-2164-14-517.
Zhu W, Zhang E, Li H, Chen X, Zhu F, Hong Y, Liao B, Liu S, Liang X. Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J Proteome. 2013;91:172–87.
Article
CAS
Google Scholar
Zhu W, Chen X, Li H, Zhu F, Hong Y, Varshney RK, Liang X. Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol Biol. 2014;85:395–409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao C, Zhao S, Hou L, Xia H, Wang J, Li C, Li A, Li T, Zhang X, Wang X. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol. 2015. https://doi.org/10.1186/s12870-015-0582-6.
Chen X, Yang Q, Li H, Li H, Hong Y, Pan L, Chen N, Zhu F, Chi X, Zhu W, et al. Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). Plant Biotechnol J. 2016;14:1215–24.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wang P, Xia H, Zhao C, Hou L, Li C, Gao C, Zhao S, Wang X. Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development. BMC Genomics. 2016. https://doi.org/10.1186/s12864-016-2857-1.
Wang P, Shi S, Ma J, Song H, Zhang Y, Gao C, Zhao C, Zhao S, Hou L, Lopez-baltazar J, Fan S, Xia H, Wang X. Global methylome and gene expression analysis during early peanut pod development. BMC Plant Biol. 2018. https://doi.org/10.1186/s12870-018-1546-4.
Shen Y, Liu YH, Zhang XJ, Sha Q, Chen ZD. Gynophore miRNA analysis at different developmental stages in Arachis duranensis. Genet Mol Res. 2016. https://doi.org/10.4238/gmr15048691.
Gao C, Wang P, Zhao S, Zhao C, Xia H, Hou L, Ju Z, Zhang Y, Li C, Wang X. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics. 2017. https://doi.org/10.1186/s12864-017-3587-8.
Ma X, Zhang X, Zhao K, Li F, Li K, Ning L, He J, Xin Z, Yin D. Small RNA and degradome deep sequencing reveals the roles of microRNAs in seed expansion in peanut (Arachis hypogaea L.). Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.00349.
Staiger D, Brown JWS. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell. 2013;25:3640–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddy ASN, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. Plant Cell. 2013;25:3657–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X, Chen L, Tian W, Tao Y, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res. 2010;20:646–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thatcher SR, Zhou W, Leonard A, Wang BB, Beatty M, Zastrow-Hayes G, Zhao X, Baumgarten A, Li B. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. Plant Cell. 2014;26:3472–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 2016;88:1058–70.
Article
CAS
PubMed
Google Scholar
Wang M, Wang P, Liang F, Ye Z, Li J, Shen C, Pei L, Wang F, Hu J, Tu L, Lindsey K, He D, Zhang X. A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation. New Phytol. 2018;217:163–78.
Article
PubMed
CAS
Google Scholar
Vaneechoutte D, Estrada AR, Lin Y, Loraine AE, Vandepoele K. Genome-wide characterization of differential transcript usage in Arabidopsis thaliana. Plant J. 2017;92:1218–31.
Article
CAS
PubMed
Google Scholar
Sun Y, Xiao H. Identification of alternative splicing events by RNA sequencing in early growth tomato fruits. BMC Genomics. 2015. https://doi.org/10.1186/s12864-015-2128-6.
Qu J, Ma C, Feng J, Xu S, Wang L, Li F, Li Y, Zhang R, Zhang X, Xue J, Guo D. Transcriptome dynamics during maize endosperm development. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0163814.eCollection2016.
Narsai R, Gouil Q, Secco D, Srivastava A, Karpievitch YV, Liew LC, Lister R, Lewsey MG, Whelan J. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol. 2017. https://doi.org/10.1186/s13059-017-1302-3.
Shlamovitz N, Ziv M, Zamski E. Light, dark and growth regulator involvement in groundnut (Arachis hypogaea L.) pod development. Plant Growth Regul. 1995;16:37–42.
Article
CAS
Google Scholar
Soga K, Wakabayashi K, Hoson T. Growth and cortical microtubule dynamics in shoot organs under microgravity and hypergravity conditions. Plant Signal Behav. 2018;13:e1422468.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson S, Kuhlemeier C. Global compression reorients cortical microtubules in Arabidopsis hypocotyl epidermis and promotes growth. Curr Biol. 2018;28:1794–802.
Article
CAS
PubMed
Google Scholar
Geisler M, Wang B, Zhu J. Auxin transport during root gravitropism: transporters and techniques. Plant Biol. 2014. https://doi.org/10.1111/plb.12030.
Silady RA, Kato T, Lukowitz W, Sieber P, Tasaka M, Somerville CR. The gravitropism defective 2 mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans. Plant Physiol. 2004;136:3095–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou N, Li B, Chen H, Su Y, Kronzucker HJ, Xiong L, Baluska F, Shi W. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress. New Phytol. 2013;200:97–111.
Article
CAS
PubMed
Google Scholar
Zupanska AK, Schultzeric ER, Yao JQ, Natasha NJ, Zhou M, Callahamn JB, Ferl RJ, Paul AL. ARG1 functions in the physiological adaptation of undifferentiated plant cells to spaceflight. Astrobiology. 2017;17:1077–111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roychoudhry S, Kepinski S. Shoot and root branch growth angle control-the wonderfulness of lateralness. Curr Opin Plant Biol. 2015;23:124–31.
Article
PubMed
Google Scholar
Harmer SL, Brooks CJ. Growth-mediated plant movements: hidden in plain sight. Curr Opin Plant Biol. 2018;41:89–94.
Article
CAS
PubMed
Google Scholar
Zhang J, Vanneste S, Brewer PB, Michniewicz M, Grones P, Kleinevehn J, Lofke C, Teichmann T, Bielach A, Cannoot B, et al. Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity. Dev Cell. 2011;20:855–66.
Article
CAS
PubMed
Google Scholar
Shih HW, Depew CL, Miller ND, Monshausen GB. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr Biol. 2015;25:3119–25.
Article
CAS
PubMed
Google Scholar
Qu X, Zhang H, Xie Y, Wang J, Chen N, Huang S. Arabidopsis Villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell. 2013;25:1803–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou M, Ren H, Li J. An auxin transport inhibitor targets villin-mediated actin dynamics to regulate polar auxin transport. Plant Physiol. 2019. https://doi.org/10.1104/pp.19.00064.
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gil JF, Liebe S, Thiel H, Lennefors BL, Kraft T, Gilmer D, Maiss E, Varrelmann M, Savenkov EI. Massive up-regulation of LBD transcription factors and expansins highlights the regulatory programs of rhizomania disease. Mol Plant Pathol. 2018;19:2333–48.
Article
CAS
Google Scholar
Kim HG, Kwon SJ, Jang YJ, Chung JH, Nam MH, Park OK. GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis. FEBS Lett. 2014;588:1652–8.
Article
CAS
PubMed
Google Scholar
Gao M, Yin X, Yang W, Lam SM, Tong X, Liu J, Wang X, Li Q, Shui G, He Z. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog. 2017;13:e1006724.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hashiguchi Y, Yano D, Nagafusa K, Kato T, Saito C, Uemura T, Ueda T, Nakano A, Tasaka M, Morita MT. A unique HEAT repeat-containing protein SHOOT GRAVITROPISM6 is involved in vacuolar membrane dynamics in gravity-sensing cells of Arabidopsis inflorescence stem. Plant Cell Physiol. 2014;55:811–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rudrabhatla P, Rajasekharan R. Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses. Plant Physiol. 2002;130:380–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Afzal AJ, Wood AJ, Lightfoot DA. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant-Microbe Interact. 2008;21:507–17.
Article
CAS
PubMed
Google Scholar
Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell. 2005;17:1105–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nodine MD, Yadegari R, Tax FE. RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Dev Cell. 2007;12:943–56.
Article
CAS
PubMed
Google Scholar
Nodine MD, Tax FE. Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordia. Dev Biol. 2008;314:161–70.
Article
CAS
PubMed
Google Scholar
Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, Mcelver J, Aux G, Patton DA, Meinke D. Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 2004;135:1206–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meister RJ, Williams LA, Monfared MM, Gallagher TL, Kraft E, Nelson CC, Gasser CS. Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J. 2004;37:426–38.
Article
CAS
PubMed
Google Scholar
Didonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J, Totong R, Grisafi P, Fink GR, Celenza JL. Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J. 2004;37:340–53.
Article
CAS
PubMed
Google Scholar
Lin R, Wang H. Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol. 2004;136:4010–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin-Tryon EL, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER coordinates light signals for proper timing of photomorphogenesis and the circadian clock in Arabidopsis. Plant Cell. 2008;20:1244–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol. 2002;49:373–85.
Article
CAS
PubMed
Google Scholar
Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J. BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev. 2001;15:1985–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masubelele NH, Dewitte W, Menges M, Maughan SC, Collins C, Huntley R, Nieuwland J, Scofield S, Murray JAH. D-type cyclins activate division in the root apex to promote seed germination in Arabidopsis. PNAS. 2005;102:15694–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei B, Zhang J, Pang C, Yu H, Guo D, Jiang H, Ding M, Chen Z, Tao Q, Gu H, Qu LJ, Qin G. The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Res. 2015;25:121–34.
Article
CAS
PubMed
Google Scholar
Wang H, Lee MM, Schiefelbein JW. Regulation of the cell expansion gene RHD3 during Arabidopsis development. Plant Physiol. 2002;129:638–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Zhong R, Morrison WH, Ye ZH. The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta. 2003;217:912–21.
Article
CAS
PubMed
Google Scholar
Yuen CYL, Sedbrook JC, Perrin RM, Carroll KL, Masson PH. Loss-of-function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. Plant Physiol. 2005;138:701–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci. 2016. https://doi.org/10.3389/fpls.2016.01446.eCollection2016.
Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Lealbertioli SCM, Ren L, Farmer AD, Pandey MK, et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet. 2019;51:877–84.
Article
CAS
PubMed
Google Scholar
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Cowley AP, Uludag M, Gur T, Mcwilliam H, Squizzato S, Park YM, Buso N, Lopez R. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43:580–4.
Article
CAS
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:182–5.
Article
Google Scholar
Sammeth M. Complete alternative splicing events are bubbles in splicing graphs. J Comput Biol. 2009;16:1117–40.
Article
CAS
PubMed
Google Scholar
Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013. https://doi.org/10.1093/nar/gkt006.
Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k- mer scheme. BMC Bioinformatics. 2014. https://doi.org/10.1186/1471-2105-15-311.
Zhao X, Gan L, Yan C, Li C, Sun Q, Wang J, Yuan CL, Zhang H, Shan S, Liu JN. Genome-wide identification and characterization of Long Non-Coding RNAs in peanut. Genes. 2019; doi: org/https://doi.org/10.3390/genes7030011.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013. https://doi.org/10.1186/gb-2013-14-4-r36.
Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 2010;38(2010):e178. https://doi.org/10.1093/nar/gkq622.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut O, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.
Article
CAS
PubMed
Google Scholar
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.
Article
CAS
PubMed
PubMed Central
Google Scholar