Ellis M, Egelund J, Schultz CJ, Bacic A. Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol. 2010;153:403–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Showalter AM. Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci. 2001;58:1399–417.
Article
CAS
PubMed
Google Scholar
Showalter AM, Basu D. Glycosylation of arabinogalactan-proteins essential for development in Arabidopsis. Commun Integr Biol. 2016;9:e1177687.
Article
PubMed
PubMed Central
CAS
Google Scholar
Showalter AM, Basu D. Extensin and arabinogalactan-protein biosynthesis: glycosyltransferases, research challenges, and biosensors. Front Plant Sci. 2016;7. https://doi.org/10.3389/fpls.2016.00814.
Liang Y, Faik A, Kieliszewski M, Tan L, Xu W-L, Showalter AM. Identification and characterization of in vitro galactosyltransferase activities involved in arabinogalactan-protein glycosylation in tobacco and Arabidopsis. Plant Physiol. 2010;154:632–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basu D, Liang Y, Liu X, Himmeldirk K, Faik A, Kieliszewski M, et al. Functional identification of a hydroxyproline-O-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis. J Biol Chem. 2013;288:10132–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogawa-Ohnishi M, Matsubayashi Y. Identification of three potent hydroxyproline O-galactosyltransferases in Arabidopsis. Plant J. 2015;81:736–46.
Article
CAS
PubMed
Google Scholar
Basu D, Tian L, Wang W, Bobbs S, Herock H, Travers A, et al. A small multigene hydroxyproline-O-galactosyltransferase family functions in arabinogalactan-protein glycosylation, growth and development in Arabidopsis. BMC Plant Biol. 2015;15:295.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, Takemura S, et al. KNS4/UPEX1: a type II arabinogalactan β-(1,3)-galactosyltransferase required for pollen exine development. Plant Physiol. 2017;173:183–205.
Article
CAS
PubMed
Google Scholar
Dilokpimol A, Poulsen CP, Vereb G, Kaneko S, Schulz A, Geshi N. Galactosyltransferases from Arabidopsis thaliana in the biosynthesis of type II arabinogalactan: molecular interaction enhances enzyme activity. BMC Plant Biol. 2014;14:90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gille S, Sharma V, Baidoo EEK, Keasling JD, Scheller HV, Pauly M. Arabinosylation of a Yariv-precipitable cell wall polymer impacts plant growth as exemplified by the Arabidopsis glycosyltransferase mutant ray1. Mol Plant. 2013;6:1369–72.
Article
CAS
PubMed
Google Scholar
Wu Y, Williams M, Bernard S, Driouich A, Showalter AM, Faik A. Functional identification of two nonredundant Arabidopsis α-(1→2)-fucosyltransferases specific to arabinogalactan proteins. J Biol Chem. 2010;285:13638–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tryfona T, Theys TE, Wagner T, Stott K, Keegstra K, Dupree P. Characterisation of FUT4 and FUT6 α-(1→2)-fucosyltransferases reveals that absence of root arabinogalactan fucosylation increases Arabidopsis root growth salt sensitivity. PLoS One. 2014;9:e93291.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knoch E, Dilokpimol A, Tryfona T, Poulsen CP, Xiong G, Harholt J, et al. A β–glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. Plant J. 2013;76:1016–29.
Article
CAS
PubMed
Google Scholar
Dilokpimol A, Geshi N. Arabidopsis thaliana glucuronosyltransferase in family GT14. Plant Signal Behav. 2014;9:e28891.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye C-Y, Li T, Tuskan GA, Tschaplinski TJ, Yang X. Comparative analysis of GT14/GT14-like gene family in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Plant Sci. 2011;181:688–95.
Article
CAS
PubMed
Google Scholar
Mutwil M, Obro J, Willats WGT, Persson S. GeneCAT--novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Res. 2008;36(Web Server issue):W320–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 2016;88:1058–70.
Article
CAS
PubMed
Google Scholar
Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, et al. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A. 2010;107:8063–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T. Egg cell–secreted EC1 triggers sperm cell activation during double fertilization. Science. 2012;338:1093–7.
Article
CAS
PubMed
Google Scholar
Wang Z-P, Xing H-L, Dong L, Zhang H-Y, Han C-Y, Wang X-C, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 2015;16:144.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kitazawa K, Tryfona T, Yoshimi Y, Hayashi Y, Kawauchi S, Antonov L, et al. β-Galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. Plant Physiol. 2013;161:1117–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamport DTA, Várnai P. Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytol. 2013;197:58–64.
Article
CAS
PubMed
Google Scholar
Lamport DTA, Varnai P, Seal CE. Back to the future with the AGP–Ca2+ flux capacitor. Ann Bot. 2014;114:1069–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corns CM, Ludman CJ. Some observations on the nature of the calcium-cresolphthalein complexone reaction and its relevance to the clinical laboratory. Ann Clin Biochem. 1987;24(Pt 4):345–51.
Article
CAS
PubMed
Google Scholar
Ma C, Liu M, Li Q, Si J, Ren X, Song H. Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Hortic Plant J. 2019;5:164–9.
Article
Google Scholar
Wang W, Akhunova A, Chao S, Akhunov E. Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. bioRxiv. 2016:051342. https://doi.org/10.1101/051342.
Ma C, Zhu C, Zheng M, Liu M, Zhang D, Liu B, et al. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res. 2019;6:1–15.
Article
CAS
Google Scholar
Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, et al. Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol. 2019;179:544–57.
CAS
PubMed
Google Scholar
Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L-L. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant. 2017;10:530–2.
Article
CAS
PubMed
Google Scholar
Chen F, Bradford KJ. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 2000;124:1265–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavalier DM, Keegstra K. Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. J Biol Chem. 2006;281:34197–207.
Article
CAS
PubMed
Google Scholar
Leubner-Metzger G, Frundt C, Vogeli-Lange R, Meins F. Class I [beta]-1,3-glucanases in the endosperm of tobacco during germination. Plant Physiol. 1995;109:751–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iglesias-Fernández R, Rodríguez-Gacio MC, Barrero-Sicilia C, Carbonero P, Matilla A. Three endo-ß-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. Planta. 2011;233:25–36.
Article
PubMed
CAS
Google Scholar
Müller K, Levesque-Tremblay G, Bartels S, Weitbrecht K, Wormit A, Usadel B, et al. Demethylesterification of cell wall pectins in arabidopsis plays a role in seed germination. Plant Physiol. 2013;161:305–16.
Article
PubMed
CAS
Google Scholar
Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, et al. α-xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. J Exp Bot. 2016;67:5615–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris K, Linkies A, Müller K, Oracz K, Wang X, Lynn JR, et al. Regulation of seed germination in the close arabidopsis relative Lepidium sativum: a global tissue-specific transcript analysis. Plant Physiol. 2011;155:1851–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao M, Showalter AM. Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J Cell Mol Biol. 1999;19:321–31.
Article
CAS
Google Scholar
Willats WG, Knox JP. A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of beta-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J Cell Mol Biol. 1996;9:919–25.
Article
CAS
Google Scholar
Véry A-A, Davies JM. Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci U S A. 2000;97:9801–6.
Article
PubMed
PubMed Central
Google Scholar
Immerzeel P, Eppink MM, de Vries SC, Schols HA, Voragen AGJ. Carrot arabinogalactan proteins are interlinked with pectins. Physiol Plant. 2006;128:18–28.
Article
CAS
Google Scholar
Griffiths JS, Tsai AY-L, Xue H, Voiniciuc C, Šola K, Seifert G, et al. SOS5 mediates Arabidopsis seed coat mucilage adherence and organization through pectins. Plant Physiol. 2014;165:991–1004.
Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, et al. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell. 2013;25:270–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li WL, Liu Y, Douglas CJ. Role of glycosyltransferases in pollen wall primexine formation and exine patterning. Plant Physiol. 2017;173:167–82.
Article
CAS
PubMed
Google Scholar
Xu S-L, Rahman A, Baskin TI, Kieber JJ. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell. 2008;20:3065–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coimbra S, Costa M, Jones B, Mendes MA, Pereira LG. Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot. 2009;60:3133–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML, Masiero S, et al. “Love is strong, and you’re so sweet”: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol Plant. 2016;9:601–14.
Article
CAS
PubMed
Google Scholar
Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K, Ootani K, et al. The AMOR arabinogalactan sugar chain induces pollen-tube competency to respond to ovular guidance. Curr Biol CB. 2016;26:1091–7.
Article
CAS
PubMed
Google Scholar
Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, et al. Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun. 2014;5:4645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Western TL. The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Sci Res. 2012;22:1–25.
Article
CAS
Google Scholar
Voiniciuc C, Yang B, Schmidt MH-W, Günl M, Usadel B. Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. Int J Mol Sci. 2015;16:3452–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu L, Shi D, Li J, Kong Y, Yu Y, Chai G, et al. CELLULOSE SYNTHASE-LIKE A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed. Plant Physiol. 2014;164:1842–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean GH, Zheng H, Tewari J, Huang J, Young DS, Hwang YT, et al. The Arabidopsis MUM2 gene encodes a beta-galactosidase required for the production of seed coat mucilage with correct hydration properties. Plant Cell. 2007;19:4007–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voiniciuc C, Dean GH, Griffiths JS, Kirchsteiger K, Hwang YT, Gillett A, et al. Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage. Plant Cell. 2013;25:944–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hepler PK, Kunkel JG, Rounds CM, Winship LJ. Calcium entry into pollen tubes. Trends Plant Sci. 2012;17:32–8.
Article
CAS
PubMed
Google Scholar
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One. 2007;2:e718.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A, et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One. 2014;9:e98186.
Article
PubMed
PubMed Central
CAS
Google Scholar
Engler C, Marillonnet S. Golden Gate cloning. Methods Mol Biol. 2014;1116:119–31.
Article
CAS
PubMed
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J Cell Mol Biol. 1998;16:735–43.
Article
CAS
Google Scholar
Hua Y, Wang C, Huang J, Wang K. A simple and efficient method for CRISPR/Cas9-induced mutant screening. J Genet Genomics. 2017;44:207–13.
Article
PubMed
Google Scholar
Lamport D. Preparation of arabinogalactan glycoproteins from plant tissue. BIO-Protoc. 2013;3. https://doi.org/10.21769/BioProtoc.918.
ØBro J, Harholt J, Scheller HV, Orfila C. Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. Phytochemistry. 2004;65:1429–38.
Article
PubMed
CAS
Google Scholar