Keeling PL, Myers AM. Biochemistry and genetics of starch synthesis. Annu Rev Food Sci Technol. 2010;1:271–303. https://doi.org/10.1146/annurev.food.102308.124214.
Article
CAS
PubMed
Google Scholar
Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch/Stärke. 2010;62:389–420. https://doi.org/10.1002/star.201000013.
Article
CAS
Google Scholar
Copeland L, Blazek J, Salman H, Tang MC. Form and functionality of starch. Food Hydrocoll. 2009;23:1527–34. https://doi.org/10.1016/j.foodhyd.2008.09.016.
Article
CAS
Google Scholar
Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym. 2001;45:253–67. https://doi.org/10.1016/S0144-8617(00)00260-5.
Article
CAS
Google Scholar
Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003;81:219–31. https://doi.org/10.1016/S0308-8146(02)00416-8.
Article
CAS
Google Scholar
Wang K, Henry RJ, Gilbert RG. Causal relations among starch biosynthesis, structure, and properties. Springer Sci Rev. 2014;2:15–33. https://doi.org/10.1007/s40362-014-0016-0.
Article
Google Scholar
Denyer K, Johnson P, Zeeman S, Smith AM. The control of amylose synthesis. J Plant Physiol. 2001;158:479–87. https://doi.org/10.1078/0176-1617-00360.
Article
CAS
Google Scholar
Šárka E, Dvořáček V. New processing and applications of waxy starch (a review). J Food Eng. 2017;206:77–87. https://doi.org/10.1016/j.jfoodeng.2017.03.006.
Article
CAS
Google Scholar
Wang S, Li C, Copeland L, Niu Q, Wang S. Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf. 2015;14:568–85. https://doi.org/10.1111/1541-4337.12143.
Article
CAS
Google Scholar
Sánchez T, Dufour D, Moreno IX, Ceballos H. Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress. J Agric Food Chem. 2010;58:5093–9. https://doi.org/10.1021/jf1001606.
Article
CAS
PubMed
Google Scholar
Rolland-Sabaté A, Sánchez T, Buléon A, Colonna P, Jaillais B, Ceballos H, Dufour D. Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocoll. 2012;27:161–74.
Article
Google Scholar
Waterschoot J, Gomand SV, Fierens E, Delcour JA. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke. 2015;67:14–29. https://doi.org/10.1002/star.201300238.
Article
CAS
Google Scholar
Tetlow IJ, Morell MK, Emes MJ. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot. 2004;55:2131–45. https://doi.org/10.1093/jxb/erh248.
Article
CAS
PubMed
Google Scholar
Zeeman SC, Kossmann J, Smith AM. 2010. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010;61:209–34. https://doi.org/10.1146/annurev-arplant-042809-112301.
Article
CAS
PubMed
Google Scholar
Huang B-Q, Tian M-L, Zhang J-J, Huang Y-B. Waxy locus and its mutant types in maize Zea mays L. Agric Sci China. 2010;9:1–10. https://doi.org/10.1016/S1671-2927(09)60061-4.
Article
CAS
Google Scholar
Fan L, Bao J, Wang Y, Yao J, Gui Y, Hu W, Zhu J, Zeng M, Li Y, Xu Y. Post-domestication selection in the maize starch pathway. PLoS One. 2009;4:e7612. https://doi.org/10.1371/journal.pone.0007612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larkin PD, Park WD. Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol Breed. 2003;12:335–9. https://doi.org/10.1023/B:MOLB.0000006797.51786.92.
Article
CAS
Google Scholar
Kharabian-Masouleh A, Waters DLE, Reinke RF, Ward R, Henry RJ. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci Rep. 2012;2:557. https://doi.org/10.1038/srep00557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito M, Nakamura T. Two-point mutations identified in emmer wheat generate null Wx-A1 alleles. Theor Appl Genet. 2005;110:276–82. https://doi.org/10.1007/s00122-004-1830-6.
Article
CAS
PubMed
Google Scholar
Zhang L, Chen H, Luo M, Zhang X, Deng M, Ma J, Qi P, Wang J, Chen G, Liu Y, Pu Z, Li W, Lan X, Wei Y, Zheng Y, Jiang Q. Transposon insertion resulted in the silencing of Wx-B1n in Chinese wheat landraces. Theor Appl Genet. 2015;130:1331. https://doi.org/10.1007/s00122-017-2901-9.
Article
Google Scholar
Xiaoyang W, Dan C, Yuqing L, Weihua L, Xinming Y, Xiuquan L, Juan D, Lihui L. Molecular characteristics of two new waxy mutations in China waxy maize. Mol Breed. 2017. https://doi.org/10.1007/s11032-016-0612-6.
Raemakers K, Schreuder M, Suurs L, Furrer-Verhorst H, Vincken J-P, de Vetten N, Jacobsen E, Visser RGF. Improved cassava starch by antisense inhibition of granule-bound starch synthase I. Mol Breed. 2005;16:163–72. https://doi.org/10.1007/s11032-005-7874-8.
Article
CAS
Google Scholar
Koehorst-van Putten HJJ, Wolters AM, Pereira-Bertram IM, van den Berg HH, van der Krol AR, Visser RG. Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta Crantz). Planta. 2012;236:1955–65. https://doi.org/10.1007/s00425-012-1796-6.
Article
CAS
PubMed
Google Scholar
Zhao S-S, Dufour D, Sánchez T, Ceballos H, Zhang P. Development of waxy cassava with different biological and physico-chemical characteristics of starches for industrial applications. Biotechnol Bioeng. 2011;108:1925–35. https://doi.org/10.1002/bit.23120.
Article
CAS
PubMed
Google Scholar
Ceballos H, Sánchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Pérez JC, Calle F, Mestres C. Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem. 2007;55:7469–76. https://doi.org/10.1021/jf070633y.
Article
CAS
PubMed
Google Scholar
Bull SE, Seung D, Chanez C, Mehta D, Kuon J, Truernit E, et al. Accelerated ex situ breeding of GBSS - and PTST1 -edited cassava for modified starch. Sci Adv. 2018;4:eaat6086. https://doi.org/10.1126/sciadv.aat6086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aiemnaka P, Wongkaew A, Chanthaworn J, Nagashima SK, Boonma S, Authapun J, Jenweerawat S, Kongsila P, Kittipadakul P, Nakasathien S, Sreewongchai T, Wannarat W, Vichukit V, López-Lavalle LAB, Ceballos H, Rojanaridpiched C, Phumichai C. Molecular characterization of a spontaneous waxy starch mutation in cassava. Crop Sci. 2012;52:2121–30. https://doi.org/10.2135/cropsci2012.01.0058.
Article
CAS
Google Scholar
Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed. 2014;33:1–14. https://doi.org/10.1007/s11032-013-9917-x.
Article
CAS
Google Scholar
Choudhury BI, Khan ML, Dayanandan S. Patterns of nucleotide diversity and phenotypes of two domestication related genes (OsC1 and Wx) in indigenous rice varieties in Northeast India. BMC Genet. 2014;15:71. https://doi.org/10.1186/1471-2156-15-71.
Article
PubMed
PubMed Central
Google Scholar
Pfister B, Zeeman SC. Formation of starch in plant cells. Cell Mol Life Sci. 2016;73:2781–807. https://doi.org/10.1007/s00018-016-2250-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet. 2016;129:1843–60. https://doi.org/10.1007/s00122-016-2743-x.
Article
CAS
PubMed
Google Scholar
Monari AM, Simeone MC, Urbano M, Margiotta B, Lafiandra D. Molecular characterization of new waxy mutants identified in bread and durum wheat. Theor Appl Genet. 2005;110:1481–9. https://doi.org/10.1007/s00122-005-1983-y.
Article
CAS
PubMed
Google Scholar
Yi X, Jiang Z, Hu W, Zhao Y, Bie T, Gao D, Liu D, Wu R, Cheng X, Cheng S, Zhang Y. Development of a kompetitive allele-specific PCR marker for selection of the mutated Wx-D1d allele in wheat breeding. Plant Breed. 2017;136:460–6. https://doi.org/10.1111/pbr.12504.
Article
CAS
Google Scholar
Morante N, Ceballos H, Sánchez T, Rolland-Sabaté A, Calle F, Hershey C, Gilbert O, Dufour D. Discovery of new spontaneous sources of amylose-free cassava starch and analysis of their structure and techno-functional properties. Food Hydrocoll. 2016;56:383–95. https://doi.org/10.1016/j.foodhyd.2015.12.025.
Article
CAS
Google Scholar
Liu J, Rong T, Li W. Mutation loci and intragenic selection marker of the granule-bound starch synthase gene in waxy maize. Mol Breed. 2007;20:93–102. https://doi.org/10.1007/s11032-006-9074-6.
Article
CAS
Google Scholar
Dobo M, Ayres N, Walker G, Park WD. Polymorphism in the GBSS gene affects amylose content in US and European rice germplasm. J Cereal Sci. 2010;52:450–6. https://doi.org/10.1016/j.jcs.2010.07.010.
Article
CAS
Google Scholar
Seung D, Boudet J, Monroe J, Schreier TB, David LC, Abt M, Lu K, Zanella M, Zeeman SC. Homologs of protein targeting to starch control starch granule initiation in Arabidopsis leaves. Plant Cell. 2017;29:1657 LP–1677. https://doi.org/10.1105/tpc.17.00222.
Article
CAS
Google Scholar
Seung D, Soyk S, Coiro M, Maier BA, Eicke S, Zeeman SC. Protein targeting to starch is required for localising granule-bound starch synthase to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol. 2015;13:e1002080. https://doi.org/10.1371/journal.pbio.1002080.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart RS, Setter TL, Gleadow RM, Kulakow P, Ferguson ME, Rounsley S, Rokhsar DS. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol. 2016;34:562–70. https://doi.org/10.1038/nbt.3535.
Article
CAS
PubMed
Google Scholar
Doyle J, Doyle J. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:1178–86. https://doi.org/10.1093/nar/gkr944.
Article
CAS
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. https://doi.org/10.1093/nar/gks596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ewing B, Green P. Base-calling of automated sequencer traces using Phred. II Error probabilities. Genome Res. 1998;8:186–94. https://doi.org/10.1101/gr.8.3.186.
Article
CAS
PubMed
Google Scholar
Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using Phred. I Accuracy assessment. Genome Res. 1998;8:175–85. https://doi.org/10.1101/gr.8.3.175.
Article
CAS
PubMed
Google Scholar
Weckx S, Del-Favero J, Rademakers R, Claes L, Cruts M, De Jonghe P, Van Broeckhoven C, De Rijk P. novoSNP, a novel computational tool for sequence variation discovery. Genome Res. 2005;15:436–42. https://doi.org/10.1101/gr.2754005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jombart T, Ahmed I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1. https://doi.org/10.1093/bioinformatics/btr521.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2018. ISBN 3–900051–07-0, URL. http://www.R-project.org.
Google Scholar