Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63(4):1593–608.
Article
CAS
PubMed
Google Scholar
Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 2015;16:237.
Article
CAS
PubMed
Google Scholar
Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jarzyniak KM, Jasiński M. Membrane transporters and drought resistance-a complex issue. Front Plant Sci. 2014;5:687.
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL. Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci. 2016;7:1029.
Article
PubMed
PubMed Central
Google Scholar
Sourour A, Afef O, Mounir R, Mongi BY. A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int J Eng Sci. 2017;6:1–4.
Article
Google Scholar
Kooyers NJ. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci. 2015;234:155–62.
Article
CAS
PubMed
Google Scholar
Tardieu F, Tuberosa R. Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol. 2010;13(2):206–12.
Article
PubMed
Google Scholar
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci. 2015;72(4):673–89.
Article
CAS
PubMed
Google Scholar
Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 2006;9(2):189–95.
Article
CAS
PubMed
Google Scholar
Li S, Xiang Y, Cheng Z, Yu X, Ruan M, Li W, Ming P. Global gene expression analysis reveals crosstalk between response mechanisms to cold and drought stresses in cassava seedlings. Front Plant Sci. 2017;8:1259.
Article
PubMed
PubMed Central
Google Scholar
Wang H, Wang H, Shao H, Tang X. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. 2016;7(248):67.
PubMed
PubMed Central
Google Scholar
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2010;27:325–33.
Article
Google Scholar
Khan N, Nazar R, Iqbal N, Anjum N. Phytohormones and abiotic stress tolerance in plants. Berlin Heidelberg: Springer; 2012.
Fox H, Doron-Faigenboim A, Kelly G, Bourstein R, Attia Z, Zhou J, Moshe Y, Moshelion M, David-Schwartz R. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiol. 2017;38(3):423–41.
Article
PubMed Central
CAS
Google Scholar
Morales A, Zurita-Silva A, Maldonado J, Silva H. Transcriptional responses of chilean quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncovers ABA-independent expression patterns. Front. Plant Sci. 2017;8:216.
Google Scholar
Gao F, Wang J, Wei S, Li Z, Wang N, Li H, Feng J, Li H, Zhou Y, Zhang F. Transcriptomic analysis of drought stress responses in Ammopiptanthus mongolicus leaves using the RNA-Seq technique. PLoS One. 2015;10(4):e0124382.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng Y, Liang C, Li B, Wan T, Liu T, Cai Y. Differential expression profiles and pathways of genes in drought resistant tree species Prunus mahaleb roots and leaves in response to drought stress. Sci Hortic. 2017;226:75–84.
Article
CAS
Google Scholar
Fu Y, Poli M, Sablok G, Wang B, Liang Y, La Porta N, Velikova V, Loreto F, Li M, Varotto C. Dissection of early transcriptional responses to water stress in Arundo donax L. by unigene-based RNA-seq. Biotechnol Biofuels. 2016;9(1):54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ksouri N, Jiménez S, Wells CE, Contreras-Moreira B, Gogorcena Y. Transcriptional responses in root and leaf of Prunus persica under drought stress using RNA sequencing. Front Plant Sci. 2016;7:1715.
Article
PubMed
PubMed Central
Google Scholar
Liang C, Wang W, Wang J, Ma J, Li C, Zhou F, Zhang S, Yu Y, Zhang L, Li W, et al. Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing. Bot Stud. 2017;58(1):42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morgil H, Tardu M, Cevahir G, Kavakli İH. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Funct Integr Genomic. 2019;19:715.
Article
CAS
Google Scholar
Chien JT, Pakala SB, Geraldo JA, Lapp SA, Humphrey JC, Barnwell JW, Kissinger JC, Galinski MR. High-quality genome assembly and annotation for plasmodium coatneyi, generated using single-molecule real-time PacBio technology. Genome Announc. 2016;4:e00883–16.
Rhoads A, Au K. PacBio sequencing and its applications. Genom Proteom Bioinf. 2015;13(5):278–89.
Article
Google Scholar
Dong R, Dong D, Luo D, Zhou Q, Chai X, Zhang J, Xie W, Liu W, Dong Y, Wang Y. Transcriptome analyses reveal candidate pod shattering-associated genes involved in the pod ventral sutures of common vetch (Vicia sativa L.). Front Plant Sci. 2017;8:649.
Article
PubMed
PubMed Central
Google Scholar
Huang Y, Gao X, Nan Z, Zhang Z. Potential value of the common vetch (Vicia sativa L.) as an animal feedstuff: a review. J Anim Physiol An N. 2017;101(5):807–23.
Bet CD. Do Prado Cordoba L, Ribeiro LS, Schnitzler E. common vetch (Vicia sativa) as a new starch source: its thermal, rheological and structural properties after acid hydrolysis. Food Biophysics. 2016;11(3):275–82.
Article
Google Scholar
Dong R, Jahufer M, Dong DK, Wang YR, Liu ZP. Characterisation of the morphological variation for seed traits among 537 germplasm accessions of common vetch (Vicia sativa L.) using digital image analysis. New Zeal J Agr Res. 2016;59(4):422–35.
Article
CAS
Google Scholar
Haffani S, Mezni M, Slama I, Ksontini M, Chaïbi W. Plant growth, water relations and proline content of three vetch species under water-limited conditions. Grass Forage Sci. 2014;69(2):323–33.
Article
CAS
Google Scholar
Zhu Y, Liu Q, Xu W, Zhang J, Wang X, Nie G, Yao L, Wang H, Lin C. De novo assembly and discovery of genes that involved in drought tolerance in the common vetch. Int J Mol Sci. 2019;20(2):328.
Ding Y, Liu N, Virlouvet L, Riethoven J-J, Fromm M, Avramova Z. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol. 2013;13(1):229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fasani E, DalCorso G, Costa A, Zenoni S, Furini A. The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response. Plant Mol Biol. 2019;99(6):517–34.
Article
CAS
PubMed
Google Scholar
Sukiran NL, Ma JC, Ma H, Su Z. ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis. Plant Mol Biol. 2019;99(1):161–74.
Article
CAS
PubMed
Google Scholar
Rui H, Zhang X, Shinwari KI, Zheng L, Shen Z. Comparative transcriptomic analysis of two Vicia sativa L. varieties with contrasting responses to cadmium stress reveals the important role of metal transporters in cadmium tolerance. Plant Soil. 2018;423(1):241–55.
Article
CAS
Google Scholar
Pan L, Zhang X, Wang J, Ma X, Zhou M, Huang L, Nie G, Wang P, Yang Z, Li J. Transcriptional profiles of drought-related genes in modulating metabolic processes and antioxidant defenses in Lolium multiflorum. Front Plant Sci. 2016;7:519.
PubMed
PubMed Central
Google Scholar
Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 2015;231:198–211.
Article
CAS
PubMed
Google Scholar
Bao F, Du D, An Y, Yang W, Wang J, Cheng T, Zhang Q. Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Front Plant Sci. 2017;8:151.
PubMed
PubMed Central
Google Scholar
Halder T, Agarwal T, Ray S. Isolation, cloning, and characterization of a novel Sorghum dehydrin (SbDhn2) protein. Protoplasma. 2016;253(6):1475–88.
Article
CAS
PubMed
Google Scholar
Halder T, Upadhyaya G, Basak C, Das A, Chakraborty C, Ray S. Dehydrins impart protection against oxidative stress in transgenic tobacco plants. Front Plant Sci. 2018;9:136.
Article
PubMed
PubMed Central
Google Scholar
Xu HX, Li XY, Xu CJ, Chen JW. Overexpression of loquat dehydrin gene EjDHN1 promotes cold tolerance in transgenic tobacco. Russ J Plant Physiol. 2018;65(1):69–77.
Article
CAS
Google Scholar
Xia Y, Li R, Bai G, Siddique KHM, Varshney RK, Baum M, Yan G, Guo P. Genetic variations of HvP5CS1 and their association with drought tolerance related traits in barley (Hordeum vulgare L.). Sci Rep-UK. 2017;7(1):7870.
Article
CAS
Google Scholar
Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16(1):86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wani SH, Kumar V, Shriram V, Sah SK. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4(3):162–76.
Article
Google Scholar
Bari R, Jones JDG. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69(4):473–88.
Article
CAS
PubMed
Google Scholar
Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, et al. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci. 2017;8:161.
PubMed
PubMed Central
Google Scholar
Nishimura N, Sarkeshik A, Nito K, Park S-Y, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 2010;61(2):290–9.
Article
CAS
PubMed
Google Scholar
Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. P Natl Acad Sci USA. 2013;110(29):12132.
Article
CAS
Google Scholar
Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S-Y, Márquez JA, Cutler SR, Rodriguez PL. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade a PP2Cs. Plant J. 2009;60(4):575–88.
Article
CAS
PubMed
Google Scholar
Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, et al. ABA receptor PYL9 promotes drought resistance and leaf senescence. P Natl Acad Sci USA. 2016;113(7):1949.
Article
CAS
Google Scholar
Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez PL. The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiol. 2013;163(1):441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komatsu K, Nishikawa Y, Ohtsuka T, Taji T, Quatrano RS, Tanaka S, Sakata Y. Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens. Plant Mol Biol. 2009;70(3):327–40.
Article
CAS
PubMed
Google Scholar
Komatsu K, Suzuki N, Kuwamura M, Nishikawa Y, Nakatani M, Ohtawa H, Takezawa D, Seki M, Tanaka M, Taji T, et al. Group a PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nat Commun. 2013;4:2219.
Article
PubMed
CAS
Google Scholar
Singh A, Pandey A, Srivastava AK, Tran L-SP, Pandey GK. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Crit Rev Biotechnol. 2016;36(6):1023–35.
Article
CAS
PubMed
Google Scholar
Boudsocq M, Barbier-Brygoo H. Laurière CJJoBC. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem. 2004;279(40):41758–66.
Article
CAS
PubMed
Google Scholar
Mizoguchi M, Umezawa T, Nakashima K, Kidokoro S, Takasaki H, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol. 2010;51(5):842–7.
Article
CAS
PubMed
Google Scholar
Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant. 2013;147(1):15–27.
Article
CAS
PubMed
Google Scholar
Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol. 2013;197(4):1142–51.
Article
CAS
PubMed
Google Scholar
Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer HW, Zeeman SC, Santelia D. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell. 2016;28(8):1860.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thalmann M, Santelia D. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 2017;214(3):943–51.
Article
CAS
PubMed
Google Scholar
Xiao W, Hu S, Zhou X, Yao R, Luo J, Yuan C, Chang H, Zhang C, Huang J, Li J, et al. A glucuronokinase gene in Arabidopsis, AtGlcAK, is involved in drought tolerance by modulating sugar metabolism. Plant Mol Biol Report. 2017;35(2):298–311.
Article
CAS
Google Scholar
La VH, Lee B-R, Islam MT, Park S-H, Lee H, Bae D-W, Kim T-H. Antagonistic shifting from abscisic acid- to salicylic acid-mediated sucrose accumulation contributes to drought tolerance in Brassica napus. Environ Exp Bot. 2019;162:38–47.
Article
CAS
Google Scholar
Pirone C. Disentangling the role of transitory starch storages in plant development and in osmotic stress response. Diss: Alma; 2016.
Google Scholar
Ashraf MA, Iqbal M, Rasheed R, Hussain I, Perveen S, Mahmood S. Chapter 16-dynamic proline metabolism: importance and regulation in water-limited environments. In: Plant metabolites and regulation under environmental stress. Cambridge: Academic Press; 2018. p. 323–36.
Pál M, Tajti J, Szalai G, Peeva V, Végh B, Janda T. Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci Rep-UK. 2018;8(1):12839.
Article
CAS
Google Scholar
Singh M, Kumar J, Singh S, Singh VP, Prasad SM. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol. 2015;14(3):407–26.
Article
CAS
Google Scholar
Dobrá J, Vanková R, Havlová M, Burman AJ, Libus J, Štorchová H. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J Plant Physiol. 2011;168(13):1588–97.
Article
PubMed
CAS
Google Scholar
Chen J, Wei B, Li G, Fan R, Zhong Y, Wang X, Zhang X. TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis. Planta. 2015;242(1):137–51.
Article
CAS
PubMed
Google Scholar
Huang W, Ma X, Wang Q, Gao Y, Xue Y, Niu X, Yu G, Liu Y. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). Plant Mol Biol. 2008;68(4):451.
Article
CAS
PubMed
Google Scholar
Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R. DNA-binding specificities of plant transcription factors and their potential to define target genes. P Natl Acad Sci USA. 2014;111(6):2367.
Article
CAS
Google Scholar
Butt HI, Yang Z, Gong Q, Chen E, Wang X, Zhao G, Ge X, Zhang X, Li F. GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC Plant Biol. 2017;17(1):142.
Article
PubMed
PubMed Central
CAS
Google Scholar
Castilhos G, Lazzarotto F, Spagnolo-Fonini L, Bodanese-Zanettini MH, Margis-Pinheiro M. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Sci. 2014;223:1–7.
Article
CAS
PubMed
Google Scholar
Chen J, Nolan T, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin YJPC. Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response. Plant Cell. 2017;29(6):1425.
CAS
PubMed
PubMed Central
Google Scholar
Kim S. Kang J-y, Cho D-I, Park JH, Kim SY. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 2004;40(1):75–87.
Article
CAS
PubMed
Google Scholar
Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol. 2014;21:133–9.
Article
CAS
PubMed
Google Scholar
Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. P Natl Acad Sci USA. 2006;103(6):1988.
Article
CAS
Google Scholar
Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li W. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol. 2014;201(4):1192–204.
Article
CAS
PubMed
Google Scholar
Wang Y, Wang Q, Liu M, Bo C, Wang X, Ma Q, Cheng B, Cai R. Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants. J Plant Biol. 2017;60(6):612–21.
Article
CAS
Google Scholar
Payton P, Kottapalli KR, Kebede H, Mahan JR, Wright RJ, Allen RD. Examining the drought stress transcriptome in cotton leaf and root tissue. Biotechnol Lett. 2011;33(4):821–8.
Article
CAS
PubMed
Google Scholar
Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 2007;143(4):1789.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung H, Chung PJ, Park S-H, Redillas MCFR, Kim YS, Suh J-W, Kim J-K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J. 2017;15(10):1295–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J. 2015;81(3):505–18.
Article
CAS
PubMed
Google Scholar
Rakocevic M, Müller M, Matsunaga FT, Neumaier N, Farias JRB, Nepomuceno AL, Fuganti-Pagliarini R. Daily heliotropic movements assist gas exchange and productive responses in DREB1A soybean plants under drought stress in the greenhouse. Plant J. 2018;96(4):801–14.
Article
CAS
PubMed
Google Scholar
Ma J, Li M-Y, Wang F, Tang J, Xiong A-S. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genomics. 2015;16(1):33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Ding Y, Cai C, Chen Z, Zhu C. The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiol Plant. 2019;165(4):690–700.
Article
CAS
PubMed
Google Scholar
Wang W, Liu B, Xu M, Jamil M, Wang G. ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa. Biochem Bioph Res Co. 2015;464(1):33–7.
Article
CAS
Google Scholar
Yang M, Zhao Y, Shi S, Du X, Gu J, Xiao K. Wheat nuclear factor Y (NF-Y) B subfamily gene TaNF-YB3;l confers critical drought tolerance through modulation of the ABA-associated signaling pathway. Plant Cell Tissue Organ Cult. 2017;128(1):97–111.
Article
CAS
Google Scholar
Luo D, Zhou Q, Wu Y, Chai X, Liu W, Wang Y, Yang Q, Wang Z, Liu Z. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol. 2019;19(1):32.
Article
PubMed
PubMed Central
Google Scholar
Chao Q, Gao Z-F, Zhang D, Zhao B-G, Dong F-Q, Fu C-X, Liu L-J, Wang B-C. The developmental dynamics of the Populus stem transcriptome. Plant Biotechnol J. 2019;17(1):206–19.
Article
CAS
PubMed
Google Scholar
Bo L, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(suppl_2):W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kawai S, Hashimoto W, Murata K. Transformation of Saccharomyces cerevisiae and other fungi. Bioengineered Bugs. 2010;1(6):395–403.
Article
PubMed
PubMed Central
Google Scholar
Li X, Zhang D, Li H, Wang Y, Zhang Y, Wood A. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol. 2014;14(1):44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wei X, Jin X, Ndayambaza B, Min X, Zhang Z, Wang Y, Liu W. Transcriptome-wide characterization and functional identification of the aquaporin gene family during drought stress in common vetch. DNA Cell Biol. 2019;38(4):374–84.
Article
CAS
PubMed
Google Scholar