FAO land and plant nutrition management service. [http://www.fao.org/ag/agl/agll/spush]. Accessed 2009.
Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 2005;1012:615–20.
Article
CAS
Google Scholar
Duarte B, Santos D, Marques JC, Caçador I. Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change. Plant Physiol Biochem. 2013;673:178–88.
Article
CAS
Google Scholar
Parida AK, Das AB, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees. 2004;182:167–74.
Article
CAS
Google Scholar
Yang L, Kang CH, Chen S, Li H. Salt stress induced proteome and transcriptome changes in sugar beet Monosomic addition line M14. J Plant Physiol. 2012;169s1:839.
Article
CAS
Google Scholar
Hossain MS, ElSayed AI, Moore M, Dietz K-J. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. J Exp Bot. 2017;685:1283–98.
Article
CAS
Google Scholar
Wedeking R, Mahlein AK, Steiner U, Oerke EC, Goldbach HE, Wimmer MA. Osmotic adjustment of young sugar beets (Beta vulgaris) under progressive drought stress and subsequent rewatering assessed by metabolite analysis and infrared thermography. Funct Plant Biol. 2016;441:119–33.
Google Scholar
Skorupa M, Gołębiewski M, Kurnik K, Niedojadło J, Kęsy J, Klamkowski K, et al. Salt stress vs salt shock - the case of sugar beet and its halophytic ancestor. BMC Plant Biol. 2019;191:57.
Article
Google Scholar
Rozema J, Cornelisse D, Zhang Y, Li H, Bruning B, Katschnig D, et al. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes. AoB PLANTS 7,2016(2014–12-9). 2014;7:plu083.
PubMed
PubMed Central
Google Scholar
Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot. 2002;471:39–50.
Article
Google Scholar
Zou C, Sang L, Gai Z, Wang Y, Li C. Morphological and physiological responses of sugar beet to alkaline stress. Sugar Tech. 2017;1:1–10.
Google Scholar
Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;592:206–16.
Article
CAS
Google Scholar
Li HW, Zang BS, Deng XW, Wang XP. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta. 2011;2345:1007.
Article
CAS
Google Scholar
Baque MA, Elgirban A, Lee EJ, Paek KY. Sucrose regulated enhanced induction of anthraquinone, phenolics, flavonoids biosynthesis and activities of antioxidant enzymes in adventitious root suspension cultures of Morinda citrifolia (L.). Acta Physiol Plant. 2012;342:405–15.
Article
CAS
Google Scholar
Fits LVD, Memelink J. ORCA3, a Jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science. 2000;2895477:295–7.
Article
Google Scholar
Mansour MMF. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant. 2000;434:491–500.
Article
Google Scholar
Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P. Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front Plant Sci. 2016;7:2035.
PubMed
Google Scholar
Postnikova OA, Shao J, Nemchinov LG. Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol. 2013;547:1041–55.
Article
CAS
Google Scholar
Fan XD, Wang JQ, Yang N, Dong YY, Liu L, Wang FW, et al. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Gene. 2013;5122:392–402.
Article
CAS
Google Scholar
Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, et al. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics. 2011;981:47–55.
Article
CAS
Google Scholar
Bahieldin A, Atef A, Sabir JSM, Gadalla NO, Edris S, Alzohairy AM, et al. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. C R Biol. 2015;3385:285–97.
Article
Google Scholar
Wang Y, Stevanato P, Yu L, Zhao H, Sun X, Sun F, et al. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. J Plant Res. 2017;1306:1079–93.
Article
CAS
Google Scholar
Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz KJ. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J Exp Bot. 2017;6821–22:5961–76.
Article
CAS
Google Scholar
Redwan M, Spinelli F, Marti L, Bazihizina N, Azzarello E, Mancuso S, et al. Investigation of root signaling under heterogeneous salt stress: a case study for Cucumis sativus L. Environ Exp Bot. 2017;143:20–8.
Article
CAS
Google Scholar
Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, et al. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell Environ. 2015;387:1213–32.
Article
Google Scholar
Gong B, Li X, Bloszies S, Wen D, Sun S, Wei M, et al. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum. Free Radic Biol Med. 2014;716:36–48.
Article
CAS
Google Scholar
Tunnacliffe A, Wise MJ. The continuing conundrum of the LEA proteins. Naturwissenschaften. 2007;9410:791–812.
Article
CAS
Google Scholar
Shao HB, Liang ZS, Shao MA. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surfaces B-Biointerfaces. 2005;453–4:131–5.
Google Scholar
Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, et al. An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA-induced antioxidant defense in Oryza Sativa L. Plant Cell Physiol. 2018;595:916.
Article
CAS
Google Scholar
Saha B, Mishra S, Awasthi JP, Sahoo L, Panda SK. Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern & Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene ( AtLEA4–1 ). Environ Exp Bot. 2016;128:99–111.
Article
CAS
Google Scholar
Campos F, Cuevas-Velazquez C, Fares MA, Reyes JL, Covarrubias AA. Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Mol Genet Genomics. 2013;28810:503–17.
Article
CAS
Google Scholar
Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic Rice. Plant Physiol. 1996;1101:249–57.
Article
Google Scholar
Wang Y, Stevanato P, Lv C, Li R, Geng G. Comparative physiological and proteomic analysis of two sugar beet genotypes with contrasting salt tolerance. J Agric Food Chem. 2019;6721:6056–73.
Article
CAS
Google Scholar
Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol. 2000;124:431–4.
Article
Google Scholar
Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 2003;915:503–27.
Article
CAS
Google Scholar
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;591:651–81.
Article
CAS
Google Scholar
Walker DJ, Miller AJ. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol. 2003;1312:676–83.
Google Scholar
Liu T, Zhuang L, Huang B. Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in Agrostis grass species. Plant and Soil. 2019;443(1–2):219–32.
Article
CAS
Google Scholar
Kim YO, Kang H, Ahn SJ. Overexpression of phytochelatin synthase AtPCS2 enhances salt tolerance in Arabidopsis thaliana. J Plant Physiol. 2019;240:153011.
Article
CAS
PubMed
Google Scholar
Lv X, Chen S, Wang Y. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Front Plant Sci. 2019;10:1431.
Article
PubMed
PubMed Central
Google Scholar
Pourcel L, Routaboul JM, Cheynier V, et al. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci. 2007;121:29–36.
Article
CAS
Google Scholar
Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 1963;2012:67–76.
Google Scholar
Hernández I, Alegre L, Breusegem FV, Munnébosch S. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci. 2009;143:125–32.
Article
CAS
Google Scholar
Kerk NM, Feldman NJ. A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development. 1995;1219:2825–33.
Google Scholar
Pignocchi C, Foyer CH. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol. 2003;64:379–89.
Article
CAS
Google Scholar
Khan TA, Mazid M, Mohammad F. A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol. 2011;282:97–111.
Google Scholar
Hojati M, Modarres-Sanavy SAM, Ghanati F, Panahi M. Hexaconazole induces antioxidant protection and apigenin-7-glucoside accumulation in Matricaria chamomilla plants subjected to drought stress. J Plant Physiol. 2011;168(8):782–91.
Chen X, Wang H, Li X, Ma K, Zhan Y, Zeng F. Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biol. 2019;191:231.
Article
CAS
Google Scholar
Ma W, Kim JK, Jia C, Yin F, Kim HJ, Akram W, et al. Comparative transcriptome and metabolic profiling analysis of buckwheat (Fagopyrum tataricum (L.) Gaertn.) under salinity stress. Metabolites. 2019;910:225.
Article
CAS
Google Scholar
Li M, Guo R, Jiao Y, Jin X, Zhang H, Shi L. Comparison of salt tolerance in Soja based on metabolomics of seedling roots. Front Plant Sci. 2017;8:1101.
Article
PubMed
PubMed Central
Google Scholar
Widodo PJH, Newbigin E, Tester M, Bacic A, Roessner U. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and clipper, which differ in salinity tolerance. J Exp Bot. 2009;6014:4089–103.
Article
CAS
Google Scholar
Geng G, Lv C, Stevanato P, Li R, Liu H, Yu L, et al. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci. 2019;2023:5910.
Article
Google Scholar
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 2012;352:454–84.
Article
CAS
Google Scholar
Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot. 1998;49321:623–47.
Google Scholar
Romero LC, Gotor C. Cysteine homeostasis plays an essential role in plant immunity. New Phytol. 1931;2011:165–77.
Google Scholar
Rimando AM, Perkins-Veazie PM. Determination of citrulline in watermelon rind. J Chromatogr. 2005;10781:196–200.
Article
CAS
Google Scholar
Akashi K, Miyake C, Yokota A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett. 2001;5083:438–42.
Article
Google Scholar
Dasgan HY, Kusvuran S, Abak K, Leport L, Larher F, Bouchereau A. The relationship between citrulline accumulation and salt tolerance during the vegetative growth of melon (Cucumis melo L.). Plant Soil Environ. 2009;552:51–7.
Article
Google Scholar
Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, et al. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell. 1810;2006:2767–81.
Google Scholar
Rhodes D. A, Hanson AD. Quaternary ammonium and tertiary Sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 1993;441:357–84.
Article
Google Scholar
Zhao X, Wang W, Zhang F, Deng J, Li Z, Fu B. Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PLoS One. 2014;99:e108020.
Article
CAS
Google Scholar
Chang K, Roberts JK. Cytoplasmic malate levels in maize root tips during K+ ion uptake determined by 13C-NMR spectroscopy. Biochim Biophys Acta. 1991;10921:29–34.
Article
Google Scholar
Jones DL. Organic acids in the rhizosphere - a critical review. Plant and Soil. 1998;2051:25–44.
Article
Google Scholar
Zuther E, Koehl K, Kopka J. Comparative metabolome analysis of the salt response in breeding cultivars of rice. In: Advances in molecular breeding toward drought and salt tolerant crops. Edited by Jenks MA, Hasegawa PM, Jain SM. Dordrecht: Springer Netherlands; 2007. p. 285–315.
Yang C, Guo W, Shi D. Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata. Agron J. 2010;1024:1081–9.
Article
CAS
Google Scholar
Liu TY, Chen MX, Zhang Y, Zhu FY, Liu YG, Tian Y, et al. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Planta. 2019;2504:1355–69.
Article
CAS
Google Scholar
Fougère F, Rudulier DL, Streeter JG. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, Bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol. 1991;964:1228–36.
Article
Google Scholar
Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, et al. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 2004;1364:4159–68.
Article
CAS
Google Scholar
Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, et al. Soluble sugars--metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav. 2009;45:388.
Article
Google Scholar
Wang L, Li G, Wei S, Li L, Zuo S, Liu X, et al. Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica. 2019;571:286–94.
Article
Google Scholar
Wang Y, Cong Y, Wang Y, Guo Z, Yue J, Xing Z, et al. Identification of early salinity stress-responsive proteins in by isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis. Int J Mol Sci. 2019;203:599.
Article
CAS
Google Scholar
Balibrea ME, Dell'Amico J, Bolarín MC, Pérez-Alfocea F. Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiol Plant. 2000;1104:503–11.
Article
Google Scholar
Mišić D, Dragićević M, Šiler B, Nestorović Živković J, Maksimović V, Momčilović I, et al. Sugars and acid invertase mediate the physiological response of Schenkia spicata root cultures to salt stress. J Plant Physiol. 2012;16913:1281–9.
Article
CAS
Google Scholar
Sakamoto A, Murata N. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot. 2000;51342:81–8.
Article
Google Scholar
Werner AK, Witte CP. The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci. 2011;167:381–7.
Article
CAS
Google Scholar
Nourimand M, Todd CD. Allantoin contributes to the stress response in cadmium-treated Arabidopsis roots. Plant Physiol Biochem. 2017;119:103–9.
Article
CAS
PubMed
Google Scholar
Irani S, Todd CD. Exogenous allantoin increases Arabidopsis seedlings tolerance to NaCl stress and regulates expression of oxidative stress response genes. J Plant Physiol. 2018;221:43–50.
Article
CAS
PubMed
Google Scholar
Irani S, Todd CD. Ureide metabolism under abiotic stress in Arabidopsis thaliana. J Plant Physiol. 2016;199:87–95.
Article
CAS
PubMed
Google Scholar
Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA. UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ. 2019;421:115–32.
Article
CAS
Google Scholar
You S, Zhu B, Wang F, Han H, Sun M, Zhu H, et al. A Vitis viniferaxanthine dehydrogenase gene, VvXDH, enhances salinity tolerance in transgenic Arabidopsis. Plant Biotechnol Rep. 2017;113:147–60.
Article
Google Scholar
Watanabe S, Matsumoto M, Hakomori Y, Takagi H, Shimada H, Sakamoto A. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant Cell Environ. 2014;374:1022–36.
Article
CAS
Google Scholar
Lindström A, Nyström C. Seasonal variation in root hardiness of container-grown scots pine, Norway spruce, and lodgepole pine seedlings. Can J For Res. 1987;178:787–93.
Article
Google Scholar
Shi H, Ye T, Chan Z. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem. 2013;712:226–34.
Article
CAS
Google Scholar
Liu F, Pang SJ. Stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmata. J Exp Mar Biol Ecol. 2010;3822:82–7.
Article
CAS
Google Scholar
Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants : protective role of exogenous polyamines. Plant Sci. 2000;1511:59–66.
Article
Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant and Soil. 1973;391:205–7.
Article
Google Scholar
Spiro RG. Analysis of sugars found in glycoproteins. Methods Enzymol. 1966;8:3–26.
Article
CAS
Google Scholar
Bradford M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem. 1976;72s(1–2):248–54.
Article
Google Scholar
Stewart RR, Bewley JD. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 1980;652:245–8.
Article
Google Scholar
Fu Y, Li F, Xu T, Cai S, Chu W, Qiu H, et al. Bioaccumulation, subcellular, and molecular localization and damage to physiology and ultrastructure in Nymphoides peltata (Gmel.) O. Kuntze exposed to yttrium. Environ Sci Pollut Res. 2014;214:2935–42.
Article
CAS
Google Scholar
Aebi H. Catalase in vitro, vol. 105. New York: Academic; 1984.
Yu CN, Luo XJ, Zhan XR, Hao J, Zhang L, Song YBL, et al. Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas. BMC Plant Biol. 2018;18:197.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Q-L, Wei X-Y, Han X-Y, Zhou Q, Wang H-Q, Ding N-Z, et al. Effects of 2,3 ',4,4 ' 5-pentachlorobiphenyl exposure during pregnancy on epigenetic imprinting and maturation of offspring's oocytes in mice. Arch Toxicol. 2019;939:2575–92.
Article
CAS
Google Scholar
Gan L, Jiang T-T, Yi W-J, Lu R, Xu F-Y, Liu C-M, et al. Study on potential biomarkers of energy metabolism-related to early-stage Yin-deficiency-heat syndrome based on metabolomics and transcriptomics. Anat Rec Adv Integr Anat Evol Biol. 2020. https://doi.org/10.1002/ar.24355.
Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol. 2015;333:243–6.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;254:402–8.
Article
CAS
Google Scholar